Cargando…
Sonographic follow-up after endoscopic carpal tunnel release for severe carpal tunnel syndrome: a one-year neuroanatomical prospective observational study
BACKGROUND: Endoscopic carpal tunnel release (ECTR) has been gradually adopted for the treatment of severe carpal tunnel syndrome (CTS). However, perioperative assessment of neuroanatomical parameters of median nerve, which are important determinant of median nerve recovery, has rarely been reported...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456940/ https://www.ncbi.nlm.nih.gov/pubmed/30967143 http://dx.doi.org/10.1186/s12891-019-2548-6 |
Sumario: | BACKGROUND: Endoscopic carpal tunnel release (ECTR) has been gradually adopted for the treatment of severe carpal tunnel syndrome (CTS). However, perioperative assessment of neuroanatomical parameters of median nerve, which are important determinant of median nerve recovery, has rarely been reported. This one-year prospective study aimed to investigate the natural history of the neuroanatomical morphology of the median nerve after ECTR in severe CTS patients by high-frequency ultrasonography and assess the ability of neuroanatomical measures to quantify morphological recovery of the median nerve after ECTR. METHODS: This study recruited 31 patients (44 wrists) with a definitive diagnosis of severe CTS and underwent ECTR operation. The edema length (EL) of median nerve from the inlet of the carpal tunnel to the proximal wrist was detected on long axis imaging plane and the anteroposterior diameter (D) and cross-sectional area (CSA) at the inlet of the carpal tunnel on short axis imaging plane were detected by high frequency ultrasound. All these metrics were detected at 3 days before surgery and at the 2nd week, 4th week, 3rd month, 6th month and 12th month after surgery separately. RESULTS: There was no significant difference of each parameter between the 2-week postoperative (1.914 ± 0.598 cm in EL, 0.258 ± 0.039 cm in D and 0.138 ± 0.015 cm(2) in CSA) and 3-days preoperative time points (P-EL =0.250; P-D = 0.125; P-CSA =0.712). From the fourth week to the third month after surgery, the parameters quickly improved. The EL (0.715 ± 0.209 cm), D (0.225 ± 0.017 cm) and CSA (0.117 ± 0.012 cm(2)) at the 3- month postoperative time points were more reduced than at the fourth week after surgery (P-EL < 0.001; P-D = 0.038; P-CSA =0.014). Thereafter, the neurological anatomy parameters recovered slowly. By the 12-month postoperative time points, the three parameters were neuroanatomically close to normal. Compared to the control group in D (0.213 ± 0.005 cm), there was no difference at the 12-month time point (0.214 ± 0.009 cm, P = 0.939). However, the difference in EL (0.098 ± 0.030 cm vs. 0.016 ± 0.011 cm) and CSA (0.103 ± 0.008 cm(2) vs. 0.073 ± 0.005 cm(2)) between patients and healthy volunteers at the 12-month time point still existed (P-EL < 0.001; P-CSA < 0.001). CONCLUSIONS: Neuroanatomical parameters were gradually improved after ECTR surgery. The best time for US follow up is at 3-month postoperative time point for patients who do not show clinical improvement, since at this time the change is the greatest for most CTS patients. This study has been registered in Chinese Clinical Trial Registry: ChiCTR-ROC-17014068 (retrospectively registered 20-12-2017). |
---|