Cargando…
DeepHistone: a deep learning approach to predicting histone modifications
MOTIVATION: Quantitative detection of histone modifications has emerged in the recent years as a major means for understanding such biological processes as chromosome packaging, transcriptional activation, and DNA damage. However, high-throughput experimental techniques such as ChIP-seq are usually...
Autores principales: | Yin, Qijin, Wu, Mengmeng, Liu, Qiao, Lv, Hairong, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456942/ https://www.ncbi.nlm.nih.gov/pubmed/30967126 http://dx.doi.org/10.1186/s12864-019-5489-4 |
Ejemplares similares
-
Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification
por: Hoffman, Gabriel E, et al.
Publicado: (2019) -
Chromatin accessibility prediction via a hybrid deep convolutional neural
network
por: Liu, Qiao, et al.
Publicado: (2018) -
HHMD: the human histone modification database
por: Zhang, Yan, et al.
Publicado: (2010) -
DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers
por: Chen, Shengquan, et al.
Publicado: (2021) -
Deep Conservation of Histone Variants in Thermococcales Archaea
por: Stevens, Kathryn M, et al.
Publicado: (2021)