Cargando…
High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system
BACKGROUND: O-Methylated phenylpropanoids, which are generally present in small amounts in plants, have improved or distinct biological activities and pharmacological properties as opposed to their unmethylated counterparts. Although microbial production could be a useful tool for the efficient and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456975/ https://www.ncbi.nlm.nih.gov/pubmed/30971246 http://dx.doi.org/10.1186/s12934-019-1118-9 |
_version_ | 1783409837788364800 |
---|---|
author | Cui, Heqing Song, Myoung Chong Ban, Yeon Hee Jun, Soo Youn Kwon, An Sung Lee, Ji Young Yoon, Yeo Joon |
author_facet | Cui, Heqing Song, Myoung Chong Ban, Yeon Hee Jun, Soo Youn Kwon, An Sung Lee, Ji Young Yoon, Yeo Joon |
author_sort | Cui, Heqing |
collection | PubMed |
description | BACKGROUND: O-Methylated phenylpropanoids, which are generally present in small amounts in plants, have improved or distinct biological activities and pharmacological properties as opposed to their unmethylated counterparts. Although microbial production could be a useful tool for the efficient and environment-friendly production of methylated phenylpropanoids, a high-yield microbial production of neither tri-methylated stilbenes nor di-/tri-methylated flavonoids has been achieved to date. RESULTS: A methyltransferase from Streptomyces avermitilis (SaOMT2), which has been known to possess 7-O-methylation activity toward several flavonoids, exhibited more diverse regiospecificity and catalyzed mono-, di-, and tri-methylation of stilbene, flavanone, and flavone when it was expressed in Streptomyces venezuelae. For the efficient production of multi-methylated phenylpropanoids, a cocultivation system was developed by employing engineered Escherichia coli strains producing pterostilbene, naringenin, and apigenin, respectively, along with SaOMT2-expressing S. venezuelae mutant. Consequently, high-yield microbial production of tri-methylated stilbenes and di-/tri-methylated flavonoids (including 3,5,4′-trimethoxystilbene, 5-hydroxy-7,4′-dimethoxyflavanone, 4′-hydroxy-5,7-dimethoxyflavanone, 5,7,4′-trimethoxyflavanone, 5-hydroxy-7,4′-dimethoxyflavone, and 5,7,4′-trimethoxyflavone) has been demonstrated for the first time. CONCLUSIONS: This cocultivation system based on the phenylpropanoid-producing E. coli and SaOMT2-expressing S. venezuelae provides an efficient tool for producing scarce and potentially valuable multi-methylated phenylpropanoids and will enable further development of these compounds as pharmaceuticals and nutraceuticals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12934-019-1118-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6456975 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-64569752019-04-19 High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system Cui, Heqing Song, Myoung Chong Ban, Yeon Hee Jun, Soo Youn Kwon, An Sung Lee, Ji Young Yoon, Yeo Joon Microb Cell Fact Research BACKGROUND: O-Methylated phenylpropanoids, which are generally present in small amounts in plants, have improved or distinct biological activities and pharmacological properties as opposed to their unmethylated counterparts. Although microbial production could be a useful tool for the efficient and environment-friendly production of methylated phenylpropanoids, a high-yield microbial production of neither tri-methylated stilbenes nor di-/tri-methylated flavonoids has been achieved to date. RESULTS: A methyltransferase from Streptomyces avermitilis (SaOMT2), which has been known to possess 7-O-methylation activity toward several flavonoids, exhibited more diverse regiospecificity and catalyzed mono-, di-, and tri-methylation of stilbene, flavanone, and flavone when it was expressed in Streptomyces venezuelae. For the efficient production of multi-methylated phenylpropanoids, a cocultivation system was developed by employing engineered Escherichia coli strains producing pterostilbene, naringenin, and apigenin, respectively, along with SaOMT2-expressing S. venezuelae mutant. Consequently, high-yield microbial production of tri-methylated stilbenes and di-/tri-methylated flavonoids (including 3,5,4′-trimethoxystilbene, 5-hydroxy-7,4′-dimethoxyflavanone, 4′-hydroxy-5,7-dimethoxyflavanone, 5,7,4′-trimethoxyflavanone, 5-hydroxy-7,4′-dimethoxyflavone, and 5,7,4′-trimethoxyflavone) has been demonstrated for the first time. CONCLUSIONS: This cocultivation system based on the phenylpropanoid-producing E. coli and SaOMT2-expressing S. venezuelae provides an efficient tool for producing scarce and potentially valuable multi-methylated phenylpropanoids and will enable further development of these compounds as pharmaceuticals and nutraceuticals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12934-019-1118-9) contains supplementary material, which is available to authorized users. BioMed Central 2019-04-10 /pmc/articles/PMC6456975/ /pubmed/30971246 http://dx.doi.org/10.1186/s12934-019-1118-9 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Cui, Heqing Song, Myoung Chong Ban, Yeon Hee Jun, Soo Youn Kwon, An Sung Lee, Ji Young Yoon, Yeo Joon High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system |
title | High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system |
title_full | High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system |
title_fullStr | High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system |
title_full_unstemmed | High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system |
title_short | High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system |
title_sort | high-yield production of multiple o-methylated phenylpropanoids by the engineered escherichia coli–streptomyces cocultivation system |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456975/ https://www.ncbi.nlm.nih.gov/pubmed/30971246 http://dx.doi.org/10.1186/s12934-019-1118-9 |
work_keys_str_mv | AT cuiheqing highyieldproductionofmultipleomethylatedphenylpropanoidsbytheengineeredescherichiacolistreptomycescocultivationsystem AT songmyoungchong highyieldproductionofmultipleomethylatedphenylpropanoidsbytheengineeredescherichiacolistreptomycescocultivationsystem AT banyeonhee highyieldproductionofmultipleomethylatedphenylpropanoidsbytheengineeredescherichiacolistreptomycescocultivationsystem AT junsooyoun highyieldproductionofmultipleomethylatedphenylpropanoidsbytheengineeredescherichiacolistreptomycescocultivationsystem AT kwonansung highyieldproductionofmultipleomethylatedphenylpropanoidsbytheengineeredescherichiacolistreptomycescocultivationsystem AT leejiyoung highyieldproductionofmultipleomethylatedphenylpropanoidsbytheengineeredescherichiacolistreptomycescocultivationsystem AT yoonyeojoon highyieldproductionofmultipleomethylatedphenylpropanoidsbytheengineeredescherichiacolistreptomycescocultivationsystem |