Cargando…

Ultrasensitive Optical Chemosensor for Cu(II) Detection

Herein, the main objective of this research is to design and synthesize a novel optical chemosensor, 2,6-Bis(4-dimethylaminophenyl)-4-(dicyanomethylene)-cyclohexane-1,1-dicarbo-nitrile (BDC), for detection of one of the most significant metal ions Cu(II). This novel fluorescent chemosensor exhibits...

Descripción completa

Detalles Bibliográficos
Autores principales: Saleh, Sayed M., Ali, Reham, Alminderej, Fahad, Ali, Ibrahim A. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457299/
https://www.ncbi.nlm.nih.gov/pubmed/31031812
http://dx.doi.org/10.1155/2019/7381046
Descripción
Sumario:Herein, the main objective of this research is to design and synthesize a novel optical chemosensor, 2,6-Bis(4-dimethylaminophenyl)-4-(dicyanomethylene)-cyclohexane-1,1-dicarbo-nitrile (BDC), for detection of one of the most significant metal ions Cu(II). This novel fluorescent chemosensor exhibits unique optical properties with large Stokes shift (about 170 nm) approximately. The fluorescence and UV–vis absorption performance among the BDC probe and Cu(II) ions were examined in 1:9 (v/v) methanol–HEPES buffer (pH = 7.2) solution. Also, BDC displays high selectivity for Cu(II) concerning other cations. Moreover, this probe provides high selectivity and sensitivity based on their fluorescence properties and recognition abilities within a detection limit of the Cu(II) contents (LOD 2.3 x 10(−7) M). The suggested mechanism of BDC sensor is attributed to the chelation process with Cu(II), to establish a 1:1 metal-ligand ratio complex with a binding constant (K(bind) = 7.16 x 10(4) M(−1)). The detection process is accompanied by quenching the main emission peak of the BDC at 571 nm. All the experimental data were collected to investigate the effects of several important parameters such as reversibility and the concentration limits. Besides, we study the interference of various metal ions on selectivity and detection capacity of this significant Cu (II) ion. This novel chemosensor shows ultrasensitive, fast tracing of Cu(II) in the physiological pH range (pH 7.2) and therefore may propose a novel promising method for the investigation of the biological functions of Cu(II) in living cells.