Cargando…

Ultra-rapid object categorization in real-world scenes with top-down manipulations

Humans are able to achieve visual object recognition rapidly and effortlessly. Object categorization is commonly believed to be achieved by interaction between bottom-up and top-down cognitive processing. In the ultra-rapid categorization scenario where the stimuli appear briefly and response time i...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Bingjie, Kankanhalli, Mohan S., Zhao, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457495/
https://www.ncbi.nlm.nih.gov/pubmed/30969988
http://dx.doi.org/10.1371/journal.pone.0214444
_version_ 1783409910161080320
author Xu, Bingjie
Kankanhalli, Mohan S.
Zhao, Qi
author_facet Xu, Bingjie
Kankanhalli, Mohan S.
Zhao, Qi
author_sort Xu, Bingjie
collection PubMed
description Humans are able to achieve visual object recognition rapidly and effortlessly. Object categorization is commonly believed to be achieved by interaction between bottom-up and top-down cognitive processing. In the ultra-rapid categorization scenario where the stimuli appear briefly and response time is limited, it is assumed that a first sweep of feedforward information is sufficient to discriminate whether or not an object is present in a scene. However, whether and how feedback/top-down processing is involved in such a brief duration remains an open question. To this end, here, we would like to examine how different top-down manipulations, such as category level, category type and real-world size, interact in ultra-rapid categorization. We have constructed a dataset comprising real-world scene images with a built-in measurement of target object display size. Based on this set of images, we have measured ultra-rapid object categorization performance by human subjects. Standard feedforward computational models representing scene features and a state-of-the-art object detection model were employed for auxiliary investigation. The results showed the influences from 1) animacy (animal, vehicle, food), 2) level of abstraction (people, sport), and 3) real-world size (four target size levels) on ultra-rapid categorization processes. This had an impact to support the involvement of top-down processing when rapidly categorizing certain objects, such as sport at a fine grained level. Our work on human vs. model comparisons also shed light on possible collaboration and integration of the two that may be of interest to both experimental and computational vision researches. All the collected images and behavioral data as well as code and models are publicly available at https://osf.io/mqwjz/.
format Online
Article
Text
id pubmed-6457495
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-64574952019-05-03 Ultra-rapid object categorization in real-world scenes with top-down manipulations Xu, Bingjie Kankanhalli, Mohan S. Zhao, Qi PLoS One Research Article Humans are able to achieve visual object recognition rapidly and effortlessly. Object categorization is commonly believed to be achieved by interaction between bottom-up and top-down cognitive processing. In the ultra-rapid categorization scenario where the stimuli appear briefly and response time is limited, it is assumed that a first sweep of feedforward information is sufficient to discriminate whether or not an object is present in a scene. However, whether and how feedback/top-down processing is involved in such a brief duration remains an open question. To this end, here, we would like to examine how different top-down manipulations, such as category level, category type and real-world size, interact in ultra-rapid categorization. We have constructed a dataset comprising real-world scene images with a built-in measurement of target object display size. Based on this set of images, we have measured ultra-rapid object categorization performance by human subjects. Standard feedforward computational models representing scene features and a state-of-the-art object detection model were employed for auxiliary investigation. The results showed the influences from 1) animacy (animal, vehicle, food), 2) level of abstraction (people, sport), and 3) real-world size (four target size levels) on ultra-rapid categorization processes. This had an impact to support the involvement of top-down processing when rapidly categorizing certain objects, such as sport at a fine grained level. Our work on human vs. model comparisons also shed light on possible collaboration and integration of the two that may be of interest to both experimental and computational vision researches. All the collected images and behavioral data as well as code and models are publicly available at https://osf.io/mqwjz/. Public Library of Science 2019-04-10 /pmc/articles/PMC6457495/ /pubmed/30969988 http://dx.doi.org/10.1371/journal.pone.0214444 Text en © 2019 Xu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Xu, Bingjie
Kankanhalli, Mohan S.
Zhao, Qi
Ultra-rapid object categorization in real-world scenes with top-down manipulations
title Ultra-rapid object categorization in real-world scenes with top-down manipulations
title_full Ultra-rapid object categorization in real-world scenes with top-down manipulations
title_fullStr Ultra-rapid object categorization in real-world scenes with top-down manipulations
title_full_unstemmed Ultra-rapid object categorization in real-world scenes with top-down manipulations
title_short Ultra-rapid object categorization in real-world scenes with top-down manipulations
title_sort ultra-rapid object categorization in real-world scenes with top-down manipulations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457495/
https://www.ncbi.nlm.nih.gov/pubmed/30969988
http://dx.doi.org/10.1371/journal.pone.0214444
work_keys_str_mv AT xubingjie ultrarapidobjectcategorizationinrealworldsceneswithtopdownmanipulations
AT kankanhallimohans ultrarapidobjectcategorizationinrealworldsceneswithtopdownmanipulations
AT zhaoqi ultrarapidobjectcategorizationinrealworldsceneswithtopdownmanipulations