Cargando…

Spring viraemia of carp virus modulates p53 expression using two distinct mechanisms

p53, which regulates cell-cycle arrest and apoptosis, is a crucial target for viruses to release cells from cell-cycle checkpoints or to protect cells from apoptosis for their own benefit. Viral evasion mechanisms of aquatic viruses remain mysterious. Here, we report the spring viremia of carp virus...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shun, Lu, Long-Feng, Liu, Shu-Bo, Zhang, Can, Li, Zhuo-Cong, Zhou, Xiao-Yu, Zhang, Yong-An
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457570/
https://www.ncbi.nlm.nih.gov/pubmed/30925159
http://dx.doi.org/10.1371/journal.ppat.1007695
Descripción
Sumario:p53, which regulates cell-cycle arrest and apoptosis, is a crucial target for viruses to release cells from cell-cycle checkpoints or to protect cells from apoptosis for their own benefit. Viral evasion mechanisms of aquatic viruses remain mysterious. Here, we report the spring viremia of carp virus (SVCV) degrading and stabilizing p53 in the ubiquitin-proteasome pathway by the N and P proteins, respectively. Early in an SVCV infection, significant induction was observed in the S phase and p53 was decreased in the protein level. Further experiments demonstrated that p53 interacted with SVCV N protein and was degraded by suppressing the K63-linked ubiquitination. However, the increase of p53 was observed late in the infection and experiments suggested that p53 was bound to SVCV P protein and stabilized by enhancing the K63-linked ubiquitination. Finally, lysine residue 358 was the key site for p53 K63-linked ubiquitination by the N and P proteins. Thus, our findings suggest that fish p53 is modulated by SVCV N and P protein in two distinct mechanisms, which uncovers the strategy for the subversion of p53-mediated host innate immune responses by aquatic viruses.