Cargando…

A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system

Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient an...

Descripción completa

Detalles Bibliográficos
Autores principales: LaFleur, Martin W., Nguyen, Thao H., Coxe, Matthew A., Yates, Kathleen B., Trombley, Justin D., Weiss, Sarah A., Brown, Flavian D., Gillis, Jacob E., Coxe, Daniel J., Doench, John G., Haining, W. Nicholas, Sharpe, Arlene H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458184/
https://www.ncbi.nlm.nih.gov/pubmed/30971695
http://dx.doi.org/10.1038/s41467-019-09656-2
_version_ 1783409963005116416
author LaFleur, Martin W.
Nguyen, Thao H.
Coxe, Matthew A.
Yates, Kathleen B.
Trombley, Justin D.
Weiss, Sarah A.
Brown, Flavian D.
Gillis, Jacob E.
Coxe, Daniel J.
Doench, John G.
Haining, W. Nicholas
Sharpe, Arlene H.
author_facet LaFleur, Martin W.
Nguyen, Thao H.
Coxe, Matthew A.
Yates, Kathleen B.
Trombley, Justin D.
Weiss, Sarah A.
Brown, Flavian D.
Gillis, Jacob E.
Coxe, Daniel J.
Doench, John G.
Haining, W. Nicholas
Sharpe, Arlene H.
author_sort LaFleur, Martin W.
collection PubMed
description Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient and can perturb cell states. Here we describe CHIME: CHimeric IMmune Editing, a CRISPR-Cas9 bone marrow delivery system to rapidly evaluate gene function in innate and adaptive immune cells in vivo without ex vivo manipulation of these mature lineages. This approach enables efficient deletion of genes of interest in major immune lineages without altering their development or function. We use this approach to perform an in vivo pooled genetic screen and identify Ptpn2 as a negative regulator of CD8(+) T cell-mediated responses to LCMV Clone 13 viral infection. These findings indicate that this genetic platform can enable rapid target discovery through pooled screening in immune cells in vivo.
format Online
Article
Text
id pubmed-6458184
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64581842019-04-12 A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system LaFleur, Martin W. Nguyen, Thao H. Coxe, Matthew A. Yates, Kathleen B. Trombley, Justin D. Weiss, Sarah A. Brown, Flavian D. Gillis, Jacob E. Coxe, Daniel J. Doench, John G. Haining, W. Nicholas Sharpe, Arlene H. Nat Commun Article Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient and can perturb cell states. Here we describe CHIME: CHimeric IMmune Editing, a CRISPR-Cas9 bone marrow delivery system to rapidly evaluate gene function in innate and adaptive immune cells in vivo without ex vivo manipulation of these mature lineages. This approach enables efficient deletion of genes of interest in major immune lineages without altering their development or function. We use this approach to perform an in vivo pooled genetic screen and identify Ptpn2 as a negative regulator of CD8(+) T cell-mediated responses to LCMV Clone 13 viral infection. These findings indicate that this genetic platform can enable rapid target discovery through pooled screening in immune cells in vivo. Nature Publishing Group UK 2019-04-10 /pmc/articles/PMC6458184/ /pubmed/30971695 http://dx.doi.org/10.1038/s41467-019-09656-2 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
LaFleur, Martin W.
Nguyen, Thao H.
Coxe, Matthew A.
Yates, Kathleen B.
Trombley, Justin D.
Weiss, Sarah A.
Brown, Flavian D.
Gillis, Jacob E.
Coxe, Daniel J.
Doench, John G.
Haining, W. Nicholas
Sharpe, Arlene H.
A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
title A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
title_full A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
title_fullStr A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
title_full_unstemmed A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
title_short A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
title_sort crispr-cas9 delivery system for in vivo screening of genes in the immune system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458184/
https://www.ncbi.nlm.nih.gov/pubmed/30971695
http://dx.doi.org/10.1038/s41467-019-09656-2
work_keys_str_mv AT lafleurmartinw acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT nguyenthaoh acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT coxematthewa acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT yateskathleenb acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT trombleyjustind acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT weisssaraha acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT brownflaviand acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT gillisjacobe acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT coxedanielj acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT doenchjohng acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT hainingwnicholas acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT sharpearleneh acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT lafleurmartinw crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT nguyenthaoh crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT coxematthewa crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT yateskathleenb crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT trombleyjustind crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT weisssaraha crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT brownflaviand crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT gillisjacobe crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT coxedanielj crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT doenchjohng crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT hainingwnicholas crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem
AT sharpearleneh crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem