Cargando…
A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient an...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458184/ https://www.ncbi.nlm.nih.gov/pubmed/30971695 http://dx.doi.org/10.1038/s41467-019-09656-2 |
_version_ | 1783409963005116416 |
---|---|
author | LaFleur, Martin W. Nguyen, Thao H. Coxe, Matthew A. Yates, Kathleen B. Trombley, Justin D. Weiss, Sarah A. Brown, Flavian D. Gillis, Jacob E. Coxe, Daniel J. Doench, John G. Haining, W. Nicholas Sharpe, Arlene H. |
author_facet | LaFleur, Martin W. Nguyen, Thao H. Coxe, Matthew A. Yates, Kathleen B. Trombley, Justin D. Weiss, Sarah A. Brown, Flavian D. Gillis, Jacob E. Coxe, Daniel J. Doench, John G. Haining, W. Nicholas Sharpe, Arlene H. |
author_sort | LaFleur, Martin W. |
collection | PubMed |
description | Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient and can perturb cell states. Here we describe CHIME: CHimeric IMmune Editing, a CRISPR-Cas9 bone marrow delivery system to rapidly evaluate gene function in innate and adaptive immune cells in vivo without ex vivo manipulation of these mature lineages. This approach enables efficient deletion of genes of interest in major immune lineages without altering their development or function. We use this approach to perform an in vivo pooled genetic screen and identify Ptpn2 as a negative regulator of CD8(+) T cell-mediated responses to LCMV Clone 13 viral infection. These findings indicate that this genetic platform can enable rapid target discovery through pooled screening in immune cells in vivo. |
format | Online Article Text |
id | pubmed-6458184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64581842019-04-12 A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system LaFleur, Martin W. Nguyen, Thao H. Coxe, Matthew A. Yates, Kathleen B. Trombley, Justin D. Weiss, Sarah A. Brown, Flavian D. Gillis, Jacob E. Coxe, Daniel J. Doench, John G. Haining, W. Nicholas Sharpe, Arlene H. Nat Commun Article Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient and can perturb cell states. Here we describe CHIME: CHimeric IMmune Editing, a CRISPR-Cas9 bone marrow delivery system to rapidly evaluate gene function in innate and adaptive immune cells in vivo without ex vivo manipulation of these mature lineages. This approach enables efficient deletion of genes of interest in major immune lineages without altering their development or function. We use this approach to perform an in vivo pooled genetic screen and identify Ptpn2 as a negative regulator of CD8(+) T cell-mediated responses to LCMV Clone 13 viral infection. These findings indicate that this genetic platform can enable rapid target discovery through pooled screening in immune cells in vivo. Nature Publishing Group UK 2019-04-10 /pmc/articles/PMC6458184/ /pubmed/30971695 http://dx.doi.org/10.1038/s41467-019-09656-2 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article LaFleur, Martin W. Nguyen, Thao H. Coxe, Matthew A. Yates, Kathleen B. Trombley, Justin D. Weiss, Sarah A. Brown, Flavian D. Gillis, Jacob E. Coxe, Daniel J. Doench, John G. Haining, W. Nicholas Sharpe, Arlene H. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system |
title | A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system |
title_full | A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system |
title_fullStr | A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system |
title_full_unstemmed | A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system |
title_short | A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system |
title_sort | crispr-cas9 delivery system for in vivo screening of genes in the immune system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458184/ https://www.ncbi.nlm.nih.gov/pubmed/30971695 http://dx.doi.org/10.1038/s41467-019-09656-2 |
work_keys_str_mv | AT lafleurmartinw acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT nguyenthaoh acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT coxematthewa acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT yateskathleenb acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT trombleyjustind acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT weisssaraha acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT brownflaviand acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT gillisjacobe acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT coxedanielj acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT doenchjohng acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT hainingwnicholas acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT sharpearleneh acrisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT lafleurmartinw crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT nguyenthaoh crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT coxematthewa crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT yateskathleenb crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT trombleyjustind crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT weisssaraha crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT brownflaviand crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT gillisjacobe crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT coxedanielj crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT doenchjohng crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT hainingwnicholas crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem AT sharpearleneh crisprcas9deliverysystemforinvivoscreeningofgenesintheimmunesystem |