Cargando…
Deep Learning With Asymmetric Connections and Hebbian Updates
We show that deep networks can be trained using Hebbian updates yielding similar performance to ordinary back-propagation on challenging image datasets. To overcome the unrealistic symmetry in connections between layers, implicit in back-propagation, the feedback weights are separate from the feedfo...
Autor principal: | Amit, Yali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458299/ https://www.ncbi.nlm.nih.gov/pubmed/31019458 http://dx.doi.org/10.3389/fncom.2019.00018 |
Ejemplares similares
-
Learning cortical hierarchies with temporal Hebbian updates
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2023) -
A Model of Motion Processing in the Visual Cortex Using Neural Field With Asymmetric Hebbian Learning
por: Gundavarapu, Anila, et al.
Publicado: (2019) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017) -
Hebbian Crosstalk Prevents Nonlinear Unsupervised Learning
por: Cox, Kingsley J. A., et al.
Publicado: (2009) -
Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning
por: Gillett, Maxwell, et al.
Publicado: (2020)