Cargando…
Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease
BACKGROUND: In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes i...
Autores principales: | Kim, Jun Pyo, Kim, Jeonghun, Park, Yu Hyun, Park, Seong Beom, Lee, Jin San, Yoo, Sole, Kim, Eun-Joo, Kim, Hee Jin, Na, Duk L., Brown, Jesse A., Lockhart, Samuel N., Seo, Sang Won, Seong, Joon-Kyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458431/ https://www.ncbi.nlm.nih.gov/pubmed/30981204 http://dx.doi.org/10.1016/j.nicl.2019.101811 |
Ejemplares similares
-
Genetic Screening in Korean Patients with Frontotemporal Dementia Syndrome
por: Kim, Eun-Joo, et al.
Publicado: (2022) -
Survival in Korean Patients with Frontotemporal Dementia Syndrome: Association with Behavioral Features and Parkinsonism
por: Jung, Na-Yeon, et al.
Publicado: (2022) -
Staging and quantification of florbetaben PET images using machine learning: impact of predicted regional cortical tracer uptake and amyloid stage on clinical outcomes
por: Kim, Jun Pyo, et al.
Publicado: (2019) -
Modeling of Frontotemporal Dementia Using iPSC Technology
por: Kim, Minchul, et al.
Publicado: (2020) -
Prediction of fast decline in amyloid positive mild cognitive impairment patients using multimodal biomarkers
por: Jang, Hyemin, et al.
Publicado: (2019)