Cargando…

Dexmedetomidine and propofol sedation requirements in an autistic rat model

BACKGROUND: Autism is a challenging neurodevelopmental disorder. Previous clinical observations have suggested altered sedation requirements for children with autism. Our study aimed to test this observation experimentally in an animal model and to explore its possible mechanisms. METHODS: Eight adu...

Descripción completa

Detalles Bibliográficos
Autores principales: Elmorsy, Soha A., Soliman, Ghada F., Rashed, Laila A., Elgendy, Hamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Anesthesiologists 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458507/
https://www.ncbi.nlm.nih.gov/pubmed/29843508
http://dx.doi.org/10.4097/kja.d.18.00005
_version_ 1783410021190598656
author Elmorsy, Soha A.
Soliman, Ghada F.
Rashed, Laila A.
Elgendy, Hamed
author_facet Elmorsy, Soha A.
Soliman, Ghada F.
Rashed, Laila A.
Elgendy, Hamed
author_sort Elmorsy, Soha A.
collection PubMed
description BACKGROUND: Autism is a challenging neurodevelopmental disorder. Previous clinical observations have suggested altered sedation requirements for children with autism. Our study aimed to test this observation experimentally in an animal model and to explore its possible mechanisms. METHODS: Eight adult pregnant female Sprague-Dawley rats were randomly divided into two groups. Four were injected with intraperitoneal sodium valproate on gestational day 12 and four were injected with normal saline. On postnatal day 28, the newborn male rats were subjected to the open-field test to confirm autistic features. Each rat was injected intraperitoneally with a single dose of propofol (50 mg/kg) or dexmedetomidine (0.2 mg/kg). The times to loss of righting reflex (LORR) and to return of righting reflex (RORR) were recorded. On the following day, all rats were re-sedated and underwent electroencephalography (EEG). Thereafter, the rats were euthanized and their hippocampal gamma-aminobutyric acid type A (GABA(A)) and glutamate N-methyl-D-aspartate (NMDA) receptor gene expressions were assessed. RESULTS: Autistic rats showed significantly longer LORR times and shorter RORR times than did the controls (median LORR times: 12.0 versus 5.0 min for dexmedetomidine and 22.0 versus 8.0 min for propofol; P < 0.05). EEG showed a low-frequency, high-amplitude wave pattern 2 min after LORR in the control rats. Autistic rats showed a high-frequency, low-amplitude awake pattern. Hippocampal GABA(A) receptor gene expression was significantly lower and NMDA gene expression was greater in autistic rats. CONCLUSIONS: This study supports the clinical observations of increased anesthetic sedative requirements in children with autism and our biochemical analyses using GABA(A) and glutamate receptor gene expression highlight possible underlying mechanisms.
format Online
Article
Text
id pubmed-6458507
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Korean Society of Anesthesiologists
record_format MEDLINE/PubMed
spelling pubmed-64585072019-04-19 Dexmedetomidine and propofol sedation requirements in an autistic rat model Elmorsy, Soha A. Soliman, Ghada F. Rashed, Laila A. Elgendy, Hamed Korean J Anesthesiol Experimental Research Article BACKGROUND: Autism is a challenging neurodevelopmental disorder. Previous clinical observations have suggested altered sedation requirements for children with autism. Our study aimed to test this observation experimentally in an animal model and to explore its possible mechanisms. METHODS: Eight adult pregnant female Sprague-Dawley rats were randomly divided into two groups. Four were injected with intraperitoneal sodium valproate on gestational day 12 and four were injected with normal saline. On postnatal day 28, the newborn male rats were subjected to the open-field test to confirm autistic features. Each rat was injected intraperitoneally with a single dose of propofol (50 mg/kg) or dexmedetomidine (0.2 mg/kg). The times to loss of righting reflex (LORR) and to return of righting reflex (RORR) were recorded. On the following day, all rats were re-sedated and underwent electroencephalography (EEG). Thereafter, the rats were euthanized and their hippocampal gamma-aminobutyric acid type A (GABA(A)) and glutamate N-methyl-D-aspartate (NMDA) receptor gene expressions were assessed. RESULTS: Autistic rats showed significantly longer LORR times and shorter RORR times than did the controls (median LORR times: 12.0 versus 5.0 min for dexmedetomidine and 22.0 versus 8.0 min for propofol; P < 0.05). EEG showed a low-frequency, high-amplitude wave pattern 2 min after LORR in the control rats. Autistic rats showed a high-frequency, low-amplitude awake pattern. Hippocampal GABA(A) receptor gene expression was significantly lower and NMDA gene expression was greater in autistic rats. CONCLUSIONS: This study supports the clinical observations of increased anesthetic sedative requirements in children with autism and our biochemical analyses using GABA(A) and glutamate receptor gene expression highlight possible underlying mechanisms. Korean Society of Anesthesiologists 2019-04 2018-05-30 /pmc/articles/PMC6458507/ /pubmed/29843508 http://dx.doi.org/10.4097/kja.d.18.00005 Text en Copyright © The Korean Society of Anesthesiologists, 2019 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Experimental Research Article
Elmorsy, Soha A.
Soliman, Ghada F.
Rashed, Laila A.
Elgendy, Hamed
Dexmedetomidine and propofol sedation requirements in an autistic rat model
title Dexmedetomidine and propofol sedation requirements in an autistic rat model
title_full Dexmedetomidine and propofol sedation requirements in an autistic rat model
title_fullStr Dexmedetomidine and propofol sedation requirements in an autistic rat model
title_full_unstemmed Dexmedetomidine and propofol sedation requirements in an autistic rat model
title_short Dexmedetomidine and propofol sedation requirements in an autistic rat model
title_sort dexmedetomidine and propofol sedation requirements in an autistic rat model
topic Experimental Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458507/
https://www.ncbi.nlm.nih.gov/pubmed/29843508
http://dx.doi.org/10.4097/kja.d.18.00005
work_keys_str_mv AT elmorsysohaa dexmedetomidineandpropofolsedationrequirementsinanautisticratmodel
AT solimanghadaf dexmedetomidineandpropofolsedationrequirementsinanautisticratmodel
AT rashedlailaa dexmedetomidineandpropofolsedationrequirementsinanautisticratmodel
AT elgendyhamed dexmedetomidineandpropofolsedationrequirementsinanautisticratmodel