Cargando…

Identification and Expression Analysis of Snf2 Family Proteins in Tomato (Solanum lycopersicum)

As part of chromatin-remodeling complexes (CRCs), sucrose nonfermenting 2 (Snf2) family proteins alter chromatin structure and nucleosome position by utilizing the energy of ATP, which allows other regulatory proteins to access DNA. Plant genomes encode a large number of Snf2 proteins, and some of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dongdong, Gao, Sujuan, Yang, Ping, Yang, Jie, Yang, Songguang, Wu, Keqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458923/
https://www.ncbi.nlm.nih.gov/pubmed/31049349
http://dx.doi.org/10.1155/2019/5080935
Descripción
Sumario:As part of chromatin-remodeling complexes (CRCs), sucrose nonfermenting 2 (Snf2) family proteins alter chromatin structure and nucleosome position by utilizing the energy of ATP, which allows other regulatory proteins to access DNA. Plant genomes encode a large number of Snf2 proteins, and some of them have been shown to be the key regulators at different developmental stages in Arabidopsis. Yet, little is known about the functions of Snf2 proteins in tomato (Solanum lycopersicum). In this study, 45 Snf2s were identified by the homologous search using representative sequences from yeast (S. cerevisiae), fruit fly (D. melanogaster), and Arabidopsis (A. thaliana) against the tomato genome annotation dataset. Tomato Snf2 proteins (also named SlCHRs) could be clustered into 6 groups and distributed on 11 chromosomes. All SlCHRs contained a helicase-C domain with about 80 amino acid residues and a SNF2-N domain with more variable amino acid residues. In addition, other conserved motifs were also identified in SlCHRs by using the MEME program. Expression profile analysis indicated that tomato Snf2 family genes displayed a wide range of expressions in different tissues and some of them were regulated by the environmental stimuli such as salicylic acid, abscisic acid, salt, and cold. Taken together, these results provide insights into the functions of SlCHRs in tomato.