Cargando…
An Improved Refined Composite Multivariate Multiscale Fuzzy Entropy Method for MI-EEG Feature Extraction
Feature extraction of motor imagery electroencephalogram (MI-EEG) has shown good application prospects in the field of medical health. Also, multivariate entropy-based feature extraction methods have been gradually applied to analyze complex multichannel biomedical signals, such as EEG and electromy...
Autores principales: | Li, Mingai, Wang, Ruotu, Yang, Jinfu, Duan, Lijuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458931/ https://www.ncbi.nlm.nih.gov/pubmed/31049051 http://dx.doi.org/10.1155/2019/7529572 |
Ejemplares similares
-
An Improved Composite Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG
por: Li, Mingai, et al.
Publicado: (2020) -
Fractional Refined Composite Multiscale Fuzzy Entropy of International Stock Indices
por: Wu, Zhiyong, et al.
Publicado: (2019) -
Refined Composite Multiscale Fuzzy Dispersion Entropy and Its Applications to Bearing Fault Diagnosis
por: Rostaghi, Mostafa, et al.
Publicado: (2023) -
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
A Refined Composite Multivariate Multiscale Fluctuation Dispersion Entropy and Its Application to Multivariate Signal of Rotating Machinery
por: Xi, Chenbo, et al.
Publicado: (2021)