Cargando…
CD164 regulates proliferation, progression, and invasion of human glioblastoma cells
Grade IV astrocytoma, also known as glioblastoma multiforme (GBM), is the most common and aggressive intracranial glial tumor. GBM is associated with very poor survival and effective treatments have remained elusive so far. Mounting evidence indicates that CD164 contributes to stemness and tumorigen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459350/ https://www.ncbi.nlm.nih.gov/pubmed/31007847 http://dx.doi.org/10.18632/oncotarget.26724 |
Sumario: | Grade IV astrocytoma, also known as glioblastoma multiforme (GBM), is the most common and aggressive intracranial glial tumor. GBM is associated with very poor survival and effective treatments have remained elusive so far. Mounting evidence indicates that CD164 contributes to stemness and tumorigenesis in normal cells and is overexpressed in various tumor types, including glioblastoma. Using tissue microarray immunohistochemistry, we show that there is a significant correlation between CD164 expression and glioma type and grade. Depletion of CD164 expression in human glioblastoma cells with siRNA reduced proliferation, migration, and invasiveness. In parallel, immunoblotting showed that downregulation of CD164 expression decreased Akt activation and modified the expression of autophagy markers by upregulating Beclin-1 and LC3B and downregulating p62. These effects were mimicked by inhibition of Akt with MK2206, which suggests that CD164 induces autophagy via Akt/Beclin-1 signaling. We propose that CD164 may serve as a GBM molecular marker and a potential target in therapeutic strategies aimed to improve outcomes for this devastating brain tumor. |
---|