Cargando…
Reproducible big data science: A case study in continuous FAIRness
Big biomedical data create exciting opportunities for discovery, but make it difficult to capture analyses and outputs in forms that are findable, accessible, interoperable, and reusable (FAIR). In response, we describe tools that make it easy to capture, and assign identifiers to, data and code thr...
Autores principales: | Madduri, Ravi, Chard, Kyle, D’Arcy, Mike, Jung, Segun C., Rodriguez, Alexis, Sulakhe, Dinanath, Deutsch, Eric, Funk, Cory, Heavner, Ben, Richards, Matthew, Shannon, Paul, Glusman, Gustavo, Price, Nathan, Kesselman, Carl, Foster, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459504/ https://www.ncbi.nlm.nih.gov/pubmed/30973881 http://dx.doi.org/10.1371/journal.pone.0213013 |
Ejemplares similares
-
Correction: Reproducible big data science: A case study in continuous FAIRness
por: Madduri, Ravi, et al.
Publicado: (2023) -
Predictive Big Data Analytics: A Study of Parkinson’s Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations
por: Dinov, Ivo D., et al.
Publicado: (2016) -
CaGrid Workflow Toolkit: A taverna based workflow tool for cancer grid
por: Tan, Wei, et al.
Publicado: (2010) -
A case study for cloud based high throughput analysis of NGS data using the globus genomics system
por: Bhuvaneshwar, Krithika, et al.
Publicado: (2014) -
FAIRly big: A framework for computationally reproducible processing of large-scale data
por: Wagner, Adina S., et al.
Publicado: (2022)