Cargando…
Adaptive multi-view multi-label learning for identifying disease-associated candidate miRNAs
Increasing evidence has indicated that microRNAs(miRNAs) play vital roles in various pathological processes and thus are closely related with many complex human diseases. The identification of potential disease-related miRNAs offers new opportunities to understand disease etiology and pathogenesis....
Autores principales: | Liang, Cheng, Yu, Shengpeng, Luo, Jiawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459551/ https://www.ncbi.nlm.nih.gov/pubmed/30933970 http://dx.doi.org/10.1371/journal.pcbi.1006931 |
Ejemplares similares
-
Self-Weighted Multi-Kernel Multi-Label Learning for Potential miRNA-Disease Association Prediction
por: Pan, Zhenxia, et al.
Publicado: (2019) -
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
por: He, Zhi-Fen, et al.
Publicado: (2022) -
miRNAs for the Detection of MultiDrug Resistance: Overview and Perspectives
por: Gisel, Andreas, et al.
Publicado: (2014) -
A novel semi-supervised model for miRNA-disease association prediction based on [Formula: see text] -norm graph
por: Liang, Cheng, et al.
Publicado: (2018) -
Predicting miRNA-disease associations based on graph attention network with multi-source information
por: Li, Guanghui, et al.
Publicado: (2022)