Cargando…

Evolutionary multiplayer games on graphs with edge diversity

Evolutionary game dynamics in structured populations has been extensively explored in past decades. However, most previous studies assume that payoffs of individuals are fully determined by the strategic behaviors of interacting parties, and social ties between them only serve as the indicator of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Qi, Zhou, Lei, Wang, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459562/
https://www.ncbi.nlm.nih.gov/pubmed/30933968
http://dx.doi.org/10.1371/journal.pcbi.1006947
Descripción
Sumario:Evolutionary game dynamics in structured populations has been extensively explored in past decades. However, most previous studies assume that payoffs of individuals are fully determined by the strategic behaviors of interacting parties, and social ties between them only serve as the indicator of the existence of interactions. This assumption neglects important information carried by inter-personal social ties such as genetic similarity, geographic proximity, and social closeness, which may crucially affect the outcome of interactions. To model these situations, we present a framework of evolutionary multiplayer games on graphs with edge diversity, where different types of edges describe diverse social ties. Strategic behaviors together with social ties determine the resulting payoffs of interactants. Under weak selection, we provide a general formula to predict the success of one behavior over the other. We apply this formula to various examples which cannot be dealt with using previous models, including the division of labor and relationship- or edge-dependent games. We find that labor division can promote collective cooperation markedly. The evolutionary process based on relationship-dependent games can be approximated by interactions under a transformed and unified game. Our work stresses the importance of social ties and provides effective methods to reduce the calculating complexity in analyzing the evolution of realistic systems.