Cargando…
Choosing a sensible cut-off point: assessing the impact of uncertainty in a social network on the performance of NBDA
Network-based diffusion analysis (NBDA) has become a widely used tool to detect and quantify social learning in animal populations. NBDA infers social learning if the spread of a novel behavior follows the social network and hence relies on appropriate information on individuals’ network connections...
Autores principales: | Wild, Sonja, Hoppitt, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Japan
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459781/ https://www.ncbi.nlm.nih.gov/pubmed/30302657 http://dx.doi.org/10.1007/s10329-018-0693-4 |
Ejemplares similares
-
Bayesian Spatial NBDA for Diffusion Data with Home-Base Coordinates
por: Nightingale, Glenna F., et al.
Publicado: (2015) -
Uncertainty in identifying local extinctions: the distribution of missing data and its effects on biodiversity measures
por: Boakes, Elizabeth H., et al.
Publicado: (2016) -
Choosing the most appropriate cut-point for continuous variables
por: TUSTUMI, FRANCISCO
Publicado: (2022) -
Social Cognition in Schizophrenia: An Overview
por: Penn, David L., et al.
Publicado: (2008) -
Spatial orientation of social caterpillars is influenced by polarized light
por: Uemura, Mizuki, et al.
Publicado: (2021)