Cargando…

CMR derived left ventricular septal convexity in carriers of the hypertrophic cardiomyopathy-causing MYBPC3-Q1061X mutation

This manuscript has not been published before and is not currently being considered for publication elsewhere. Increased septal convexity of left ventricle has been described in subjects with hypertrophic cardiomyopathy (HCM) -causing mutations without left ventricular hypertrophy (LVH). Our objecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Tarkiainen, Mika, Sipola, Petri, Jalanko, Mikko, Heliö, Tiina, Jääskeläinen, Pertti, Kivelä, Kati, Laine, Mika, Lauerma, Kirsi, Kuusisto, Johanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459818/
https://www.ncbi.nlm.nih.gov/pubmed/30976029
http://dx.doi.org/10.1038/s41598-019-42376-7
Descripción
Sumario:This manuscript has not been published before and is not currently being considered for publication elsewhere. Increased septal convexity of left ventricle has been described in subjects with hypertrophic cardiomyopathy (HCM) -causing mutations without left ventricular hypertrophy (LVH). Our objective was to study septal convexity by cardiac magnetic resonance (CMR) in subjects with the Finnish founder mutation Q1016X in the myosin-binding protein C gene (MYBPC3). Septal convexity was measured in end-diastolic 4-chamber CMR image in 67 study subjects (47 subjects with the MYBPC3-Q1061X mutation and 20 healthy relatives without the mutation). Septal convexity was significantly increased in subjects with the MYBPC3-Q1061X mutation and LVH (n = 32) compared to controls (11.4 ± 4.3 vs 2.7 ± 3.2 mm, P < 0.001). In mutation carriers without LVH, there was a trend for increased septal convexity compared to controls (4.9 ± 2.5 vs 2.7 ± 3.2 mm, P = 0.074). When indexed for BSA, septal convexity in mutation carriers without LVH was 2.8 ± 1.4 mm/m(2) and 1.5 ± 1.6 mm/m(2) in controls (P = 0.036). In all mutation carriers, septal convexity correlated significantly with body surface area, age, maximal LV wall thickness, LV mass, and late gadolinium enhancement. Subjects with the MYBPC3–Q10961X mutation have increased septal convexity irrespective of the presence of LVH. Septal convexity appears to reflect septal remodeling, and could be useful in recognizing LVH negative mutation carriers.