Cargando…
Adaptively Weighted and Robust Mathematical Programming for the Discovery of Driver Gene Sets in Cancers
High coverage and mutual exclusivity (HCME), which are considered two combinatorial properties of mutations in a collection of driver genes in cancers, have been used to develop mathematical programming models for distinguishing cancer driver gene sets. In this paper, we summarize a weak HCME patter...
Autores principales: | Xu, Xiaolu, Qin, Pan, Gu, Hong, Wang, Jia, Wang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459865/ https://www.ncbi.nlm.nih.gov/pubmed/30976053 http://dx.doi.org/10.1038/s41598-019-42500-7 |
Ejemplares similares
-
FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
por: Gu, Hong, et al.
Publicado: (2020) -
Corrigendum: FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
por: Gu, Hong, et al.
Publicado: (2021) -
Discovery of cancer common and specific driver gene sets
por: Zhang, Junhua, et al.
Publicado: (2017) -
The adaptive evolution of cancer driver genes
por: Gu, Langyu, et al.
Publicado: (2023) -
Robust adaptive dynamic programming
por: Jiang, Yu, et al.
Publicado: (2017)