Cargando…
Imaging through the Whole Brain of Drosophila at λ/20 Super-resolution
Recently, many super-resolution technologies have been demonstrated, significantly affecting biological studies by observation of cellular structures down to nanometer precision. However, current super-resolution techniques mostly rely on wavefront engineering or wide-field imaging of signal blinkin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460254/ https://www.ncbi.nlm.nih.gov/pubmed/30978667 http://dx.doi.org/10.1016/j.isci.2019.03.025 |
Sumario: | Recently, many super-resolution technologies have been demonstrated, significantly affecting biological studies by observation of cellular structures down to nanometer precision. However, current super-resolution techniques mostly rely on wavefront engineering or wide-field imaging of signal blinking or fluctuation, and thus imaging depths are limited due to tissue scattering or aberration. Here we present a technique that is capable of imaging through an intact Drosophila brain with 20-nm lateral resolution at ∼200 μm depth. The spatial resolution is provided by molecular localization of a photoconvertible fluorescent protein Kaede, whose red form is found to exhibit blinking state. The deep-tissue observation is enabled by optical sectioning of spinning disk microscopy, as well as reduced scattering from optical clearing. Together these techniques are readily available for many biologists, providing three-dimensional resolution of densely entangled dendritic fibers in a complete Drosophila brain. The method paves the way toward whole-brain neural network studies and is applicable to other high-resolution bioimaging. |
---|