Cargando…
Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting
BACKGROUND: Clinical prediction models are often constructed using multicenter databases. Such a data structure poses additional challenges for statistical analysis (clustered data) but offers opportunities for model generalizability to a broad range of centers. The purpose of this study was to desc...
Autores principales: | Wynants, L., Kent, D. M., Timmerman, D., Lundquist, C. M., Van Calster, B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460661/ https://www.ncbi.nlm.nih.gov/pubmed/31093576 http://dx.doi.org/10.1186/s41512-019-0046-9 |
Ejemplares similares
-
Developing risk models for multicenter data using standard logistic regression produced suboptimal predictions: A simulation study
por: Falconieri, Nora, et al.
Publicado: (2020) -
Screening for data clustering in multicenter studies: the residual intraclass correlation
por: Wynants, Laure, et al.
Publicado: (2013) -
Prediction models in multicenter studies: methodological aspects and current state of the art
por: Wynants, Laure, et al.
Publicado: (2015) -
Genome-wide association studies in pharmacogenomics: untapped potential for translation
por: Guessous, Idris, et al.
Publicado: (2009) -
Predictive analytics in health care: how can we know it works?
por: Van Calster, Ben, et al.
Publicado: (2019)