Cargando…
External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol
BACKGROUND: Pre-eclampsia, a condition with raised blood pressure and proteinuria is associated with an increased risk of maternal and offspring mortality and morbidity. Early identification of mothers at risk is needed to target management. METHODS/DESIGN: We aim to systematically review the existi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460674/ https://www.ncbi.nlm.nih.gov/pubmed/31093545 http://dx.doi.org/10.1186/s41512-017-0016-z |
_version_ | 1783410365671931904 |
---|---|
author | Allotey, John Snell, Kym I. E. Chan, Claire Hooper, Richard Dodds, Julie Rogozinska, Ewelina Khan, Khalid S. Poston, Lucilla Kenny, Louise Myers, Jenny Thilaganathan, Basky Chappell, Lucy Mol, Ben W. Von Dadelszen, Peter Ahmed, Asif Green, Marcus Poon, Liona Khalil, Asma Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila |
author_facet | Allotey, John Snell, Kym I. E. Chan, Claire Hooper, Richard Dodds, Julie Rogozinska, Ewelina Khan, Khalid S. Poston, Lucilla Kenny, Louise Myers, Jenny Thilaganathan, Basky Chappell, Lucy Mol, Ben W. Von Dadelszen, Peter Ahmed, Asif Green, Marcus Poon, Liona Khalil, Asma Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila |
author_sort | Allotey, John |
collection | PubMed |
description | BACKGROUND: Pre-eclampsia, a condition with raised blood pressure and proteinuria is associated with an increased risk of maternal and offspring mortality and morbidity. Early identification of mothers at risk is needed to target management. METHODS/DESIGN: We aim to systematically review the existing literature to identify prediction models for pre-eclampsia. We have established the International Prediction of Pregnancy Complication Network (IPPIC), made up of 72 researchers from 21 countries who have carried out relevant primary studies or have access to existing registry databases, and collectively possess data from more than two million patients. We will use the individual participant data (IPD) from these studies to externally validate these existing prediction models and summarise model performance across studies using random-effects meta-analysis for any, late (after 34 weeks) and early (before 34 weeks) onset pre-eclampsia. If none of the models perform well, we will recalibrate (update), or develop and validate new prediction models using the IPD. We will assess the differential accuracy of the models in various settings and subgroups according to the risk status. We will also validate or develop prediction models based on clinical characteristics only; clinical and biochemical markers; clinical and ultrasound parameters; and clinical, biochemical and ultrasound tests. DISCUSSION: Numerous systematic reviews with aggregate data meta-analysis have evaluated various risk factors separately or in combination for predicting pre-eclampsia, but these are affected by many limitations. Our large-scale collaborative IPD approach encourages consensus towards well developed, and validated prognostic models, rather than a number of competing non-validated ones. The large sample size from our IPD will also allow development and validation of multivariable prediction model for the relatively rare outcome of early onset pre-eclampsia. TRIAL REGISTRATION: The project was registered on Prospero on the 27 November 2015 with ID: CRD42015029349. |
format | Online Article Text |
id | pubmed-6460674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-64606742019-05-15 External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol Allotey, John Snell, Kym I. E. Chan, Claire Hooper, Richard Dodds, Julie Rogozinska, Ewelina Khan, Khalid S. Poston, Lucilla Kenny, Louise Myers, Jenny Thilaganathan, Basky Chappell, Lucy Mol, Ben W. Von Dadelszen, Peter Ahmed, Asif Green, Marcus Poon, Liona Khalil, Asma Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila Diagn Progn Res Protocol BACKGROUND: Pre-eclampsia, a condition with raised blood pressure and proteinuria is associated with an increased risk of maternal and offspring mortality and morbidity. Early identification of mothers at risk is needed to target management. METHODS/DESIGN: We aim to systematically review the existing literature to identify prediction models for pre-eclampsia. We have established the International Prediction of Pregnancy Complication Network (IPPIC), made up of 72 researchers from 21 countries who have carried out relevant primary studies or have access to existing registry databases, and collectively possess data from more than two million patients. We will use the individual participant data (IPD) from these studies to externally validate these existing prediction models and summarise model performance across studies using random-effects meta-analysis for any, late (after 34 weeks) and early (before 34 weeks) onset pre-eclampsia. If none of the models perform well, we will recalibrate (update), or develop and validate new prediction models using the IPD. We will assess the differential accuracy of the models in various settings and subgroups according to the risk status. We will also validate or develop prediction models based on clinical characteristics only; clinical and biochemical markers; clinical and ultrasound parameters; and clinical, biochemical and ultrasound tests. DISCUSSION: Numerous systematic reviews with aggregate data meta-analysis have evaluated various risk factors separately or in combination for predicting pre-eclampsia, but these are affected by many limitations. Our large-scale collaborative IPD approach encourages consensus towards well developed, and validated prognostic models, rather than a number of competing non-validated ones. The large sample size from our IPD will also allow development and validation of multivariable prediction model for the relatively rare outcome of early onset pre-eclampsia. TRIAL REGISTRATION: The project was registered on Prospero on the 27 November 2015 with ID: CRD42015029349. BioMed Central 2017-10-03 /pmc/articles/PMC6460674/ /pubmed/31093545 http://dx.doi.org/10.1186/s41512-017-0016-z Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Protocol Allotey, John Snell, Kym I. E. Chan, Claire Hooper, Richard Dodds, Julie Rogozinska, Ewelina Khan, Khalid S. Poston, Lucilla Kenny, Louise Myers, Jenny Thilaganathan, Basky Chappell, Lucy Mol, Ben W. Von Dadelszen, Peter Ahmed, Asif Green, Marcus Poon, Liona Khalil, Asma Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol |
title | External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol |
title_full | External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol |
title_fullStr | External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol |
title_full_unstemmed | External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol |
title_short | External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol |
title_sort | external validation, update and development of prediction models for pre-eclampsia using an individual participant data (ipd) meta-analysis: the international prediction of pregnancy complication network (ippic pre-eclampsia) protocol |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460674/ https://www.ncbi.nlm.nih.gov/pubmed/31093545 http://dx.doi.org/10.1186/s41512-017-0016-z |
work_keys_str_mv | AT alloteyjohn externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT snellkymie externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT chanclaire externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT hooperrichard externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT doddsjulie externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT rogozinskaewelina externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT khankhalids externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT postonlucilla externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT kennylouise externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT myersjenny externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT thilaganathanbasky externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT chappelllucy externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT molbenw externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT vondadelszenpeter externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT ahmedasif externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT greenmarcus externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT poonliona externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT khalilasma externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT moonskarelgm externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT rileyrichardd externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT thangaratinamshakila externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol AT externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol |