Cargando…

External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol

BACKGROUND: Pre-eclampsia, a condition with raised blood pressure and proteinuria is associated with an increased risk of maternal and offspring mortality and morbidity. Early identification of mothers at risk is needed to target management. METHODS/DESIGN: We aim to systematically review the existi...

Descripción completa

Detalles Bibliográficos
Autores principales: Allotey, John, Snell, Kym I. E., Chan, Claire, Hooper, Richard, Dodds, Julie, Rogozinska, Ewelina, Khan, Khalid S., Poston, Lucilla, Kenny, Louise, Myers, Jenny, Thilaganathan, Basky, Chappell, Lucy, Mol, Ben W., Von Dadelszen, Peter, Ahmed, Asif, Green, Marcus, Poon, Liona, Khalil, Asma, Moons, Karel G. M., Riley, Richard D., Thangaratinam, Shakila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460674/
https://www.ncbi.nlm.nih.gov/pubmed/31093545
http://dx.doi.org/10.1186/s41512-017-0016-z
_version_ 1783410365671931904
author Allotey, John
Snell, Kym I. E.
Chan, Claire
Hooper, Richard
Dodds, Julie
Rogozinska, Ewelina
Khan, Khalid S.
Poston, Lucilla
Kenny, Louise
Myers, Jenny
Thilaganathan, Basky
Chappell, Lucy
Mol, Ben W.
Von Dadelszen, Peter
Ahmed, Asif
Green, Marcus
Poon, Liona
Khalil, Asma
Moons, Karel G. M.
Riley, Richard D.
Thangaratinam, Shakila
author_facet Allotey, John
Snell, Kym I. E.
Chan, Claire
Hooper, Richard
Dodds, Julie
Rogozinska, Ewelina
Khan, Khalid S.
Poston, Lucilla
Kenny, Louise
Myers, Jenny
Thilaganathan, Basky
Chappell, Lucy
Mol, Ben W.
Von Dadelszen, Peter
Ahmed, Asif
Green, Marcus
Poon, Liona
Khalil, Asma
Moons, Karel G. M.
Riley, Richard D.
Thangaratinam, Shakila
author_sort Allotey, John
collection PubMed
description BACKGROUND: Pre-eclampsia, a condition with raised blood pressure and proteinuria is associated with an increased risk of maternal and offspring mortality and morbidity. Early identification of mothers at risk is needed to target management. METHODS/DESIGN: We aim to systematically review the existing literature to identify prediction models for pre-eclampsia. We have established the International Prediction of Pregnancy Complication Network (IPPIC), made up of 72 researchers from 21 countries who have carried out relevant primary studies or have access to existing registry databases, and collectively possess data from more than two million patients. We will use the individual participant data (IPD) from these studies to externally validate these existing prediction models and summarise model performance across studies using random-effects meta-analysis for any, late (after 34 weeks) and early (before 34 weeks) onset pre-eclampsia. If none of the models perform well, we will recalibrate (update), or develop and validate new prediction models using the IPD. We will assess the differential accuracy of the models in various settings and subgroups according to the risk status. We will also validate or develop prediction models based on clinical characteristics only; clinical and biochemical markers; clinical and ultrasound parameters; and clinical, biochemical and ultrasound tests. DISCUSSION: Numerous systematic reviews with aggregate data meta-analysis have evaluated various risk factors separately or in combination for predicting pre-eclampsia, but these are affected by many limitations. Our large-scale collaborative IPD approach encourages consensus towards well developed, and validated prognostic models, rather than a number of competing non-validated ones. The large sample size from our IPD will also allow development and validation of multivariable prediction model for the relatively rare outcome of early onset pre-eclampsia. TRIAL REGISTRATION: The project was registered on Prospero on the 27 November 2015 with ID: CRD42015029349.
format Online
Article
Text
id pubmed-6460674
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-64606742019-05-15 External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol Allotey, John Snell, Kym I. E. Chan, Claire Hooper, Richard Dodds, Julie Rogozinska, Ewelina Khan, Khalid S. Poston, Lucilla Kenny, Louise Myers, Jenny Thilaganathan, Basky Chappell, Lucy Mol, Ben W. Von Dadelszen, Peter Ahmed, Asif Green, Marcus Poon, Liona Khalil, Asma Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila Diagn Progn Res Protocol BACKGROUND: Pre-eclampsia, a condition with raised blood pressure and proteinuria is associated with an increased risk of maternal and offspring mortality and morbidity. Early identification of mothers at risk is needed to target management. METHODS/DESIGN: We aim to systematically review the existing literature to identify prediction models for pre-eclampsia. We have established the International Prediction of Pregnancy Complication Network (IPPIC), made up of 72 researchers from 21 countries who have carried out relevant primary studies or have access to existing registry databases, and collectively possess data from more than two million patients. We will use the individual participant data (IPD) from these studies to externally validate these existing prediction models and summarise model performance across studies using random-effects meta-analysis for any, late (after 34 weeks) and early (before 34 weeks) onset pre-eclampsia. If none of the models perform well, we will recalibrate (update), or develop and validate new prediction models using the IPD. We will assess the differential accuracy of the models in various settings and subgroups according to the risk status. We will also validate or develop prediction models based on clinical characteristics only; clinical and biochemical markers; clinical and ultrasound parameters; and clinical, biochemical and ultrasound tests. DISCUSSION: Numerous systematic reviews with aggregate data meta-analysis have evaluated various risk factors separately or in combination for predicting pre-eclampsia, but these are affected by many limitations. Our large-scale collaborative IPD approach encourages consensus towards well developed, and validated prognostic models, rather than a number of competing non-validated ones. The large sample size from our IPD will also allow development and validation of multivariable prediction model for the relatively rare outcome of early onset pre-eclampsia. TRIAL REGISTRATION: The project was registered on Prospero on the 27 November 2015 with ID: CRD42015029349. BioMed Central 2017-10-03 /pmc/articles/PMC6460674/ /pubmed/31093545 http://dx.doi.org/10.1186/s41512-017-0016-z Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Protocol
Allotey, John
Snell, Kym I. E.
Chan, Claire
Hooper, Richard
Dodds, Julie
Rogozinska, Ewelina
Khan, Khalid S.
Poston, Lucilla
Kenny, Louise
Myers, Jenny
Thilaganathan, Basky
Chappell, Lucy
Mol, Ben W.
Von Dadelszen, Peter
Ahmed, Asif
Green, Marcus
Poon, Liona
Khalil, Asma
Moons, Karel G. M.
Riley, Richard D.
Thangaratinam, Shakila
External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol
title External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol
title_full External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol
title_fullStr External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol
title_full_unstemmed External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol
title_short External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol
title_sort external validation, update and development of prediction models for pre-eclampsia using an individual participant data (ipd) meta-analysis: the international prediction of pregnancy complication network (ippic pre-eclampsia) protocol
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460674/
https://www.ncbi.nlm.nih.gov/pubmed/31093545
http://dx.doi.org/10.1186/s41512-017-0016-z
work_keys_str_mv AT alloteyjohn externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT snellkymie externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT chanclaire externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT hooperrichard externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT doddsjulie externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT rogozinskaewelina externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT khankhalids externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT postonlucilla externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT kennylouise externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT myersjenny externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT thilaganathanbasky externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT chappelllucy externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT molbenw externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT vondadelszenpeter externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT ahmedasif externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT greenmarcus externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT poonliona externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT khalilasma externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT moonskarelgm externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT rileyrichardd externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT thangaratinamshakila externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol
AT externalvalidationupdateanddevelopmentofpredictionmodelsforpreeclampsiausinganindividualparticipantdataipdmetaanalysistheinternationalpredictionofpregnancycomplicationnetworkippicpreeclampsiaprotocol