Cargando…
Development and validation of clinical prediction models to risk stratify patients presenting with small pulmonary nodules: a research protocol
INTRODUCTION: Lung cancer is a common cancer, with over 1.3 million cases worldwide each year. Early diagnosis using computed tomography (CT) screening has been shown to reduce mortality but also detect non-malignant nodules that require follow-up scanning or alternative methods of investigation. Pr...
Autores principales: | Oke, Jason L., Pickup, Lyndsey C., Declerck, Jérôme, Callister, Matthew E., Baldwin, David, Gustafson, Jennifer, Peschl, Heiko, Ather, Sarim, Tsakok, Maria, Exell, Alan, Gleeson, Fergus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460802/ https://www.ncbi.nlm.nih.gov/pubmed/31093569 http://dx.doi.org/10.1186/s41512-018-0044-3 |
Ejemplares similares
-
Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules
por: Massion, Pierre P., et al.
Publicado: (2020) -
External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules
por: Baldwin, David R, et al.
Publicado: (2020) -
Evaluation of a novel deep learning–based classifier for perifissural nodules
por: Han, Daiwei, et al.
Publicado: (2020) -
COVID-19 pneumonia and the masquerades
por: Xie, Cheng, et al.
Publicado: (2020) -
Developing an understanding of artificial intelligence lung nodule risk prediction using insights from the Brock model
por: Chetan, Madhurima R., et al.
Publicado: (2022)