Cargando…
Nested Dilation Networks for Brain Tumor Segmentation Based on Magnetic Resonance Imaging
Aim: Brain tumors are among the most fatal cancers worldwide. Diagnosing and manually segmenting tumors are time-consuming clinical tasks, and success strongly depends on the doctor's experience. Automatic quantitative analysis and accurate segmentation of brain tumors are greatly needed for ca...
Autores principales: | Wang, Liansheng, Wang, Shuxin, Chen, Rongzhen, Qu, Xiaobo, Chen, Yiping, Huang, Shaohui, Liu, Changhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460997/ https://www.ncbi.nlm.nih.gov/pubmed/31024229 http://dx.doi.org/10.3389/fnins.2019.00285 |
Ejemplares similares
-
Semi-automatic segmentation of the fetal brain from magnetic resonance imaging
por: Wang, Jianan, et al.
Publicado: (2022) -
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
por: Kushibar, Kaisar, et al.
Publicado: (2021) -
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation
por: Zhu, Hancan, et al.
Publicado: (2019) -
Residual Block Based Nested U-Type Architecture for Multi-Modal Brain Tumor Image Segmentation
por: Chen, Sirui, et al.
Publicado: (2022) -
Magnetic resonance imaging of healthy and diseased brain networks
por: He, Yong, et al.
Publicado: (2014)