Cargando…

HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma

The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8(+) T cell suppression versus wild-type Tregs under hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Miska, Jason, Lee-Chang, Catalina, Rashidi, Aida, Muroski, Megan E., Chang, Alan L., Lopez-Rosas, Aurora, Zhang, Peng, Panek, Wojciech K., Cordero, Alex, Han, Yu, Ahmed, Atique U., Chandel, Navdeep S., Lesniak, Maciej S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461402/
https://www.ncbi.nlm.nih.gov/pubmed/30943404
http://dx.doi.org/10.1016/j.celrep.2019.03.029
_version_ 1783410485092155392
author Miska, Jason
Lee-Chang, Catalina
Rashidi, Aida
Muroski, Megan E.
Chang, Alan L.
Lopez-Rosas, Aurora
Zhang, Peng
Panek, Wojciech K.
Cordero, Alex
Han, Yu
Ahmed, Atique U.
Chandel, Navdeep S.
Lesniak, Maciej S.
author_facet Miska, Jason
Lee-Chang, Catalina
Rashidi, Aida
Muroski, Megan E.
Chang, Alan L.
Lopez-Rosas, Aurora
Zhang, Peng
Panek, Wojciech K.
Cordero, Alex
Han, Yu
Ahmed, Atique U.
Chandel, Navdeep S.
Lesniak, Maciej S.
author_sort Miska, Jason
collection PubMed
description The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8(+) T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors. Under hypoxia, HIF-1α directs glucose away from mitochondria, leaving Tregs dependent on fatty acids for mitochondrial metabolism within the hypoxic tumor. Indeed, inhibition of lipid oxidation enhances the survival of mice with glioma. Interestingly, HIF-1α-deficient-Treg mice exhibit significantly enhanced animal survival in a murine model of glioma, due to their stymied migratory capacity, explaining their reduced abundance in tumor-bearing mice. Thus HIF-1α acts as a metabolic switch for Tregs between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression.
format Online
Article
Text
id pubmed-6461402
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-64614022019-04-12 HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma Miska, Jason Lee-Chang, Catalina Rashidi, Aida Muroski, Megan E. Chang, Alan L. Lopez-Rosas, Aurora Zhang, Peng Panek, Wojciech K. Cordero, Alex Han, Yu Ahmed, Atique U. Chandel, Navdeep S. Lesniak, Maciej S. Cell Rep Article The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8(+) T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors. Under hypoxia, HIF-1α directs glucose away from mitochondria, leaving Tregs dependent on fatty acids for mitochondrial metabolism within the hypoxic tumor. Indeed, inhibition of lipid oxidation enhances the survival of mice with glioma. Interestingly, HIF-1α-deficient-Treg mice exhibit significantly enhanced animal survival in a murine model of glioma, due to their stymied migratory capacity, explaining their reduced abundance in tumor-bearing mice. Thus HIF-1α acts as a metabolic switch for Tregs between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression. 2019-04-02 /pmc/articles/PMC6461402/ /pubmed/30943404 http://dx.doi.org/10.1016/j.celrep.2019.03.029 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Miska, Jason
Lee-Chang, Catalina
Rashidi, Aida
Muroski, Megan E.
Chang, Alan L.
Lopez-Rosas, Aurora
Zhang, Peng
Panek, Wojciech K.
Cordero, Alex
Han, Yu
Ahmed, Atique U.
Chandel, Navdeep S.
Lesniak, Maciej S.
HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
title HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
title_full HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
title_fullStr HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
title_full_unstemmed HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
title_short HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
title_sort hif-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461402/
https://www.ncbi.nlm.nih.gov/pubmed/30943404
http://dx.doi.org/10.1016/j.celrep.2019.03.029
work_keys_str_mv AT miskajason hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT leechangcatalina hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT rashidiaida hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT muroskimegane hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT changalanl hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT lopezrosasaurora hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT zhangpeng hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT panekwojciechk hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT corderoalex hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT hanyu hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT ahmedatiqueu hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT chandelnavdeeps hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma
AT lesniakmaciejs hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma