Cargando…
HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8(+) T cell suppression versus wild-type Tregs under hy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461402/ https://www.ncbi.nlm.nih.gov/pubmed/30943404 http://dx.doi.org/10.1016/j.celrep.2019.03.029 |
_version_ | 1783410485092155392 |
---|---|
author | Miska, Jason Lee-Chang, Catalina Rashidi, Aida Muroski, Megan E. Chang, Alan L. Lopez-Rosas, Aurora Zhang, Peng Panek, Wojciech K. Cordero, Alex Han, Yu Ahmed, Atique U. Chandel, Navdeep S. Lesniak, Maciej S. |
author_facet | Miska, Jason Lee-Chang, Catalina Rashidi, Aida Muroski, Megan E. Chang, Alan L. Lopez-Rosas, Aurora Zhang, Peng Panek, Wojciech K. Cordero, Alex Han, Yu Ahmed, Atique U. Chandel, Navdeep S. Lesniak, Maciej S. |
author_sort | Miska, Jason |
collection | PubMed |
description | The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8(+) T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors. Under hypoxia, HIF-1α directs glucose away from mitochondria, leaving Tregs dependent on fatty acids for mitochondrial metabolism within the hypoxic tumor. Indeed, inhibition of lipid oxidation enhances the survival of mice with glioma. Interestingly, HIF-1α-deficient-Treg mice exhibit significantly enhanced animal survival in a murine model of glioma, due to their stymied migratory capacity, explaining their reduced abundance in tumor-bearing mice. Thus HIF-1α acts as a metabolic switch for Tregs between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression. |
format | Online Article Text |
id | pubmed-6461402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-64614022019-04-12 HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma Miska, Jason Lee-Chang, Catalina Rashidi, Aida Muroski, Megan E. Chang, Alan L. Lopez-Rosas, Aurora Zhang, Peng Panek, Wojciech K. Cordero, Alex Han, Yu Ahmed, Atique U. Chandel, Navdeep S. Lesniak, Maciej S. Cell Rep Article The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8(+) T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors. Under hypoxia, HIF-1α directs glucose away from mitochondria, leaving Tregs dependent on fatty acids for mitochondrial metabolism within the hypoxic tumor. Indeed, inhibition of lipid oxidation enhances the survival of mice with glioma. Interestingly, HIF-1α-deficient-Treg mice exhibit significantly enhanced animal survival in a murine model of glioma, due to their stymied migratory capacity, explaining their reduced abundance in tumor-bearing mice. Thus HIF-1α acts as a metabolic switch for Tregs between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression. 2019-04-02 /pmc/articles/PMC6461402/ /pubmed/30943404 http://dx.doi.org/10.1016/j.celrep.2019.03.029 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Miska, Jason Lee-Chang, Catalina Rashidi, Aida Muroski, Megan E. Chang, Alan L. Lopez-Rosas, Aurora Zhang, Peng Panek, Wojciech K. Cordero, Alex Han, Yu Ahmed, Atique U. Chandel, Navdeep S. Lesniak, Maciej S. HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma |
title | HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma |
title_full | HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma |
title_fullStr | HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma |
title_full_unstemmed | HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma |
title_short | HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma |
title_sort | hif-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461402/ https://www.ncbi.nlm.nih.gov/pubmed/30943404 http://dx.doi.org/10.1016/j.celrep.2019.03.029 |
work_keys_str_mv | AT miskajason hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT leechangcatalina hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT rashidiaida hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT muroskimegane hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT changalanl hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT lopezrosasaurora hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT zhangpeng hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT panekwojciechk hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT corderoalex hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT hanyu hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT ahmedatiqueu hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT chandelnavdeeps hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma AT lesniakmaciejs hif1aisametabolicswitchbetweenglycolyticdrivenmigrationandoxidativephosphorylationdrivenimmunosuppressionoftregsinglioblastoma |