Cargando…
Histogram-based models on non-thin section chest CT predict invasiveness of primary lung adenocarcinoma subsolid nodules
109 pathologically proven subsolid nodules (SSN) were segmented by 2 readers on non-thin section chest CT with a lung nodule analysis software followed by extraction of CT attenuation histogram and geometric features. Functional data analysis of histograms provided data driven features (FPC1,2,3) us...
Autores principales: | Oikonomou, Anastasia, Salazar, Pascal, Zhang, Yuchen, Hwang, David M., Petersen, Alexander, Dmytriw, Adam A., Paul, Narinder S., Nguyen, Elsie T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461662/ https://www.ncbi.nlm.nih.gov/pubmed/30979926 http://dx.doi.org/10.1038/s41598-019-42340-5 |
Ejemplares similares
-
Assessing invasiveness of subsolid lung adenocarcinomas with combined attenuation and geometric feature models
por: de Margerie-Mellon, Constance, et al.
Publicado: (2020) -
Incidental, subsolid pulmonary nodules at CT: etiology and management
por: Seidelman, Jessica L., et al.
Publicado: (2013) -
CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction
por: Li, Xiaohu, et al.
Publicado: (2020) -
Thin-slice computed tomography enables to classify pulmonary subsolid nodules into pre-invasive lesion/minimally invasive adenocarcinoma and invasive adenocarcinoma: a retrospective study
por: Li, Min, et al.
Publicado: (2023) -
Subsolid pulmonary nodules: Controversy and perspective
por: Hammer, Mark M., et al.
Publicado: (2020)