Cargando…
Multi-objective optimized genomic breeding strategies for sustainable food improvement
The purpose of breeding programs is to obtain sustainable gains in multiple traits while controlling the loss of genetic variation. The decisions at each breeding cycle involve multiple, usually competing, objectives; these complex decisions can be supported by the insights that are gained by applyi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461918/ https://www.ncbi.nlm.nih.gov/pubmed/30262841 http://dx.doi.org/10.1038/s41437-018-0147-1 |
_version_ | 1783410554447069184 |
---|---|
author | Akdemir, Deniz Beavis, William Fritsche-Neto, Roberto Singh, Asheesh K. Isidro-Sánchez, Julio |
author_facet | Akdemir, Deniz Beavis, William Fritsche-Neto, Roberto Singh, Asheesh K. Isidro-Sánchez, Julio |
author_sort | Akdemir, Deniz |
collection | PubMed |
description | The purpose of breeding programs is to obtain sustainable gains in multiple traits while controlling the loss of genetic variation. The decisions at each breeding cycle involve multiple, usually competing, objectives; these complex decisions can be supported by the insights that are gained by applying multi-objective optimization principles to breeding. The discussion in this manuscript includes the definition of several multi-objective optimized breeding approaches within the phenotypic or genomic breeding frameworks and the comparison of these approaches with the standard multi-trait breeding schemes such as tandem selection, independent culling and index selection. Proposed methods are demonstrated with two empirical data sets and simulations. In addition, we have described several graphical tools that can aid breeders in arriving at a compromise decision. The results show that the proposed methodology is a viable approach to answer several real breeding problems. In simulations, the newly proposed methods resulted in gains larger than the methods previously proposed including index selection: Compared to the best alternative breeding strategy, the gains from multi-objective optimized parental proportions approaches were about 20–30% higher at the end of long-term simulations of breeding cycles. In addition, the flexibility of the multi-objective optimized breeding strategies were displayed with methods and examples covering non-dominated selection, assignment of optimal parental proportions, using genomewide marker effects in producing optimal mating designs, and finally in selection of training populations for genomic prediction. |
format | Online Article Text |
id | pubmed-6461918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-64619182019-06-25 Multi-objective optimized genomic breeding strategies for sustainable food improvement Akdemir, Deniz Beavis, William Fritsche-Neto, Roberto Singh, Asheesh K. Isidro-Sánchez, Julio Heredity (Edinb) Article The purpose of breeding programs is to obtain sustainable gains in multiple traits while controlling the loss of genetic variation. The decisions at each breeding cycle involve multiple, usually competing, objectives; these complex decisions can be supported by the insights that are gained by applying multi-objective optimization principles to breeding. The discussion in this manuscript includes the definition of several multi-objective optimized breeding approaches within the phenotypic or genomic breeding frameworks and the comparison of these approaches with the standard multi-trait breeding schemes such as tandem selection, independent culling and index selection. Proposed methods are demonstrated with two empirical data sets and simulations. In addition, we have described several graphical tools that can aid breeders in arriving at a compromise decision. The results show that the proposed methodology is a viable approach to answer several real breeding problems. In simulations, the newly proposed methods resulted in gains larger than the methods previously proposed including index selection: Compared to the best alternative breeding strategy, the gains from multi-objective optimized parental proportions approaches were about 20–30% higher at the end of long-term simulations of breeding cycles. In addition, the flexibility of the multi-objective optimized breeding strategies were displayed with methods and examples covering non-dominated selection, assignment of optimal parental proportions, using genomewide marker effects in producing optimal mating designs, and finally in selection of training populations for genomic prediction. Springer International Publishing 2018-09-27 2019-05 /pmc/articles/PMC6461918/ /pubmed/30262841 http://dx.doi.org/10.1038/s41437-018-0147-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Akdemir, Deniz Beavis, William Fritsche-Neto, Roberto Singh, Asheesh K. Isidro-Sánchez, Julio Multi-objective optimized genomic breeding strategies for sustainable food improvement |
title | Multi-objective optimized genomic breeding strategies for sustainable food improvement |
title_full | Multi-objective optimized genomic breeding strategies for sustainable food improvement |
title_fullStr | Multi-objective optimized genomic breeding strategies for sustainable food improvement |
title_full_unstemmed | Multi-objective optimized genomic breeding strategies for sustainable food improvement |
title_short | Multi-objective optimized genomic breeding strategies for sustainable food improvement |
title_sort | multi-objective optimized genomic breeding strategies for sustainable food improvement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461918/ https://www.ncbi.nlm.nih.gov/pubmed/30262841 http://dx.doi.org/10.1038/s41437-018-0147-1 |
work_keys_str_mv | AT akdemirdeniz multiobjectiveoptimizedgenomicbreedingstrategiesforsustainablefoodimprovement AT beaviswilliam multiobjectiveoptimizedgenomicbreedingstrategiesforsustainablefoodimprovement AT fritschenetoroberto multiobjectiveoptimizedgenomicbreedingstrategiesforsustainablefoodimprovement AT singhasheeshk multiobjectiveoptimizedgenomicbreedingstrategiesforsustainablefoodimprovement AT isidrosanchezjulio multiobjectiveoptimizedgenomicbreedingstrategiesforsustainablefoodimprovement |