Cargando…

Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response

To investigate how chromatin architecture is spatiotemporally organized at a double-strand break (DSB) repair locus, we established a biophysical method to quantify chromatin compaction at the nucleosome level during the DNA damage response (DDR). The method is based on phasor image-correlation spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Jieqiong, Scipioni, Lorenzo, Wright, Belinda K., Bartolec, Tara K., Zhang, Jessie, Masamsetti, V. Pragathi, Gaus, Katharina, Gratton, Enrico, Cesare, Anthony J., Hinde, Elizabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462080/
https://www.ncbi.nlm.nih.gov/pubmed/30918123
http://dx.doi.org/10.1073/pnas.1814965116
_version_ 1783410569345236992
author Lou, Jieqiong
Scipioni, Lorenzo
Wright, Belinda K.
Bartolec, Tara K.
Zhang, Jessie
Masamsetti, V. Pragathi
Gaus, Katharina
Gratton, Enrico
Cesare, Anthony J.
Hinde, Elizabeth
author_facet Lou, Jieqiong
Scipioni, Lorenzo
Wright, Belinda K.
Bartolec, Tara K.
Zhang, Jessie
Masamsetti, V. Pragathi
Gaus, Katharina
Gratton, Enrico
Cesare, Anthony J.
Hinde, Elizabeth
author_sort Lou, Jieqiong
collection PubMed
description To investigate how chromatin architecture is spatiotemporally organized at a double-strand break (DSB) repair locus, we established a biophysical method to quantify chromatin compaction at the nucleosome level during the DNA damage response (DDR). The method is based on phasor image-correlation spectroscopy of histone fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) microscopy data acquired in live cells coexpressing H2B-eGFP and H2B-mCherry. This multiplexed approach generates spatiotemporal maps of nuclear-wide chromatin compaction that, when coupled with laser microirradiation-induced DSBs, quantify the size, stability, and spacing between compact chromatin foci throughout the DDR. Using this technology, we identify that ataxia–telangiectasia mutated (ATM) and RNF8 regulate rapid chromatin decompaction at DSBs and formation of compact chromatin foci surrounding the repair locus. This chromatin architecture serves to demarcate the repair locus from the surrounding nuclear environment and modulate 53BP1 mobility.
format Online
Article
Text
id pubmed-6462080
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-64620802019-04-16 Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response Lou, Jieqiong Scipioni, Lorenzo Wright, Belinda K. Bartolec, Tara K. Zhang, Jessie Masamsetti, V. Pragathi Gaus, Katharina Gratton, Enrico Cesare, Anthony J. Hinde, Elizabeth Proc Natl Acad Sci U S A PNAS Plus To investigate how chromatin architecture is spatiotemporally organized at a double-strand break (DSB) repair locus, we established a biophysical method to quantify chromatin compaction at the nucleosome level during the DNA damage response (DDR). The method is based on phasor image-correlation spectroscopy of histone fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) microscopy data acquired in live cells coexpressing H2B-eGFP and H2B-mCherry. This multiplexed approach generates spatiotemporal maps of nuclear-wide chromatin compaction that, when coupled with laser microirradiation-induced DSBs, quantify the size, stability, and spacing between compact chromatin foci throughout the DDR. Using this technology, we identify that ataxia–telangiectasia mutated (ATM) and RNF8 regulate rapid chromatin decompaction at DSBs and formation of compact chromatin foci surrounding the repair locus. This chromatin architecture serves to demarcate the repair locus from the surrounding nuclear environment and modulate 53BP1 mobility. National Academy of Sciences 2019-04-09 2019-03-27 /pmc/articles/PMC6462080/ /pubmed/30918123 http://dx.doi.org/10.1073/pnas.1814965116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle PNAS Plus
Lou, Jieqiong
Scipioni, Lorenzo
Wright, Belinda K.
Bartolec, Tara K.
Zhang, Jessie
Masamsetti, V. Pragathi
Gaus, Katharina
Gratton, Enrico
Cesare, Anthony J.
Hinde, Elizabeth
Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response
title Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response
title_full Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response
title_fullStr Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response
title_full_unstemmed Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response
title_short Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response
title_sort phasor histone flim-fret microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the dna damage response
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462080/
https://www.ncbi.nlm.nih.gov/pubmed/30918123
http://dx.doi.org/10.1073/pnas.1814965116
work_keys_str_mv AT loujieqiong phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT scipionilorenzo phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT wrightbelindak phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT bartolectarak phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT zhangjessie phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT masamsettivpragathi phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT gauskatharina phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT grattonenrico phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT cesareanthonyj phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse
AT hindeelizabeth phasorhistoneflimfretmicroscopyquantifiesspatiotemporalrearrangementofchromatinarchitectureduringthednadamageresponse