Cargando…

The Human Lung Mucosa Drives Differential Mycobacterium tuberculosis Infection Outcome in the Alveolar Epithelium

Mycobacterium tuberculosis (M.tb) is deposited into the alveolus where it first encounters the alveolar lining fluid (ALF) prior contacts host cells. We demonstrated that M.tb-exposure to human ALF alters its cell surface, driving better M.tb infection control by professional phagocytes. Contrary to...

Descripción completa

Detalles Bibliográficos
Autores principales: Scordo, JM, Olmo-Fontánez, AM, Kelley, HV, Sidiki, S, Arcos, J, Akhter, A, Wewers, MD, Torrelles, JB
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462240/
https://www.ncbi.nlm.nih.gov/pubmed/30846830
http://dx.doi.org/10.1038/s41385-019-0156-2
Descripción
Sumario:Mycobacterium tuberculosis (M.tb) is deposited into the alveolus where it first encounters the alveolar lining fluid (ALF) prior contacts host cells. We demonstrated that M.tb-exposure to human ALF alters its cell surface, driving better M.tb infection control by professional phagocytes. Contrary to these findings, our results with non-professional phagocytes alveolar epithelial cells (ATs) define two distinct subsets of human ALFs; where M.tb exposure to Low (L)-ALF or High(H)-ALF results in low or high intracellular bacterial growth rates in ATs, respectively. H-ALF exposed-M.tb growth within ATs was independent of M.tb-uptake, M.tb-trafficking, and M.tb-infection induced cytotoxicity; however, it was associated with enhanced bacterial replication within LAMP-1(+)/ABCA1(+) compartments. H-ALF exposed-M.tb infection of ATs decreased AT immune mediator production, decreased AT surface adhesion expression, and downregulated macrophage inflammatory responses. Composition analysis of H-ALF vs. L-ALF showed H-ALF with higher protein tyrosine nitration and less functional ALF-innate proteins important in M.tb pathogenesis. Replenishment of H-ALF with functional ALF-innate proteins reversed the H-ALF-M.tb growth rate to the levels observed for L-ALF-M.tb. These results indicate that dysfunctionality of innate proteins in the H-ALF phenotype promotes M.tb replication within ATs, while limiting inflammation and phagocyte activation, thus potentiating ATs as a reservoir for M.tb replication and survival.