Cargando…

Low-Digit and High-Digit Polymers in the Origin of Life

Extant life uses two kinds of linear biopolymers that mutually control their own production, as well as the cellular metabolism and the production and homeostatic maintenance of other biopolymers. Nucleic acids are linear polymers composed of a relatively low structural variety of monomeric residues...

Descripción completa

Detalles Bibliográficos
Autor principal: Strazewski, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463190/
https://www.ncbi.nlm.nih.gov/pubmed/30717360
http://dx.doi.org/10.3390/life9010017
_version_ 1783410722443624448
author Strazewski, Peter
author_facet Strazewski, Peter
author_sort Strazewski, Peter
collection PubMed
description Extant life uses two kinds of linear biopolymers that mutually control their own production, as well as the cellular metabolism and the production and homeostatic maintenance of other biopolymers. Nucleic acids are linear polymers composed of a relatively low structural variety of monomeric residues, and thus a low diversity per accessed volume. Proteins are more compact linear polymers that dispose of a huge compositional diversity even at the monomeric level, and thus bear a much higher catalytic potential. The fine-grained diversity of proteins makes an unambiguous information transfer from protein templates too error-prone, so they need to be resynthesized in every generation. But proteins can catalyse both their own reproduction as well as the efficient and faithful replication of nucleic acids, which resolves in a most straightforward way an issue termed “Eigen’s paradox”. Here the importance of the existence of both kinds of linear biopolymers is discussed in the context of the emergence of cellular life, be it for the historic orgin of life on Earth, on some other habitable planet, or in the test tube. An immediate consequence of this analysis is the necessity for translation to appear early during the evolution of life.
format Online
Article
Text
id pubmed-6463190
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64631902019-04-22 Low-Digit and High-Digit Polymers in the Origin of Life Strazewski, Peter Life (Basel) Article Extant life uses two kinds of linear biopolymers that mutually control their own production, as well as the cellular metabolism and the production and homeostatic maintenance of other biopolymers. Nucleic acids are linear polymers composed of a relatively low structural variety of monomeric residues, and thus a low diversity per accessed volume. Proteins are more compact linear polymers that dispose of a huge compositional diversity even at the monomeric level, and thus bear a much higher catalytic potential. The fine-grained diversity of proteins makes an unambiguous information transfer from protein templates too error-prone, so they need to be resynthesized in every generation. But proteins can catalyse both their own reproduction as well as the efficient and faithful replication of nucleic acids, which resolves in a most straightforward way an issue termed “Eigen’s paradox”. Here the importance of the existence of both kinds of linear biopolymers is discussed in the context of the emergence of cellular life, be it for the historic orgin of life on Earth, on some other habitable planet, or in the test tube. An immediate consequence of this analysis is the necessity for translation to appear early during the evolution of life. MDPI 2019-02-02 /pmc/articles/PMC6463190/ /pubmed/30717360 http://dx.doi.org/10.3390/life9010017 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Strazewski, Peter
Low-Digit and High-Digit Polymers in the Origin of Life
title Low-Digit and High-Digit Polymers in the Origin of Life
title_full Low-Digit and High-Digit Polymers in the Origin of Life
title_fullStr Low-Digit and High-Digit Polymers in the Origin of Life
title_full_unstemmed Low-Digit and High-Digit Polymers in the Origin of Life
title_short Low-Digit and High-Digit Polymers in the Origin of Life
title_sort low-digit and high-digit polymers in the origin of life
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463190/
https://www.ncbi.nlm.nih.gov/pubmed/30717360
http://dx.doi.org/10.3390/life9010017
work_keys_str_mv AT strazewskipeter lowdigitandhighdigitpolymersintheoriginoflife