Cargando…
Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants
Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of stron...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463390/ https://www.ncbi.nlm.nih.gov/pubmed/30988137 http://dx.doi.org/10.1042/BCJ20180707 |
_version_ | 1783410749255712768 |
---|---|
author | Nikkanen, Lauri Rintamäki, Eevi |
author_facet | Nikkanen, Lauri Rintamäki, Eevi |
author_sort | Nikkanen, Lauri |
collection | PubMed |
description | Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems. |
format | Online Article Text |
id | pubmed-6463390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64633902019-04-23 Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants Nikkanen, Lauri Rintamäki, Eevi Biochem J Review Articles Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems. Portland Press Ltd. 2019-04-15 2019-04-15 /pmc/articles/PMC6463390/ /pubmed/30988137 http://dx.doi.org/10.1042/BCJ20180707 Text en © 2019 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Articles Nikkanen, Lauri Rintamäki, Eevi Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants |
title | Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants |
title_full | Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants |
title_fullStr | Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants |
title_full_unstemmed | Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants |
title_short | Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants |
title_sort | chloroplast thioredoxin systems dynamically regulate photosynthesis in plants |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463390/ https://www.ncbi.nlm.nih.gov/pubmed/30988137 http://dx.doi.org/10.1042/BCJ20180707 |
work_keys_str_mv | AT nikkanenlauri chloroplastthioredoxinsystemsdynamicallyregulatephotosynthesisinplants AT rintamakieevi chloroplastthioredoxinsystemsdynamicallyregulatephotosynthesisinplants |