Cargando…
Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery
Bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective interventions available for sustained weight loss and improved glucose metabolism. Bariatric surgery alters the enterohepatic bile acid circulation, resulting in increa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463577/ https://www.ncbi.nlm.nih.gov/pubmed/30135133 http://dx.doi.org/10.2337/dbi17-0007 |
_version_ | 1783410778233110528 |
---|---|
author | Bozadjieva, Nadejda Heppner, Kristy M. Seeley, Randy J. |
author_facet | Bozadjieva, Nadejda Heppner, Kristy M. Seeley, Randy J. |
author_sort | Bozadjieva, Nadejda |
collection | PubMed |
description | Bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective interventions available for sustained weight loss and improved glucose metabolism. Bariatric surgery alters the enterohepatic bile acid circulation, resulting in increased plasma bile levels as well as altered bile acid composition. While it remains unclear why both VSG and RYGB can alter bile acids, it is possible that these changes are important mediators of the effects of surgery. Moreover, a molecular target of bile acid synthesis, the bile acid–activated transcription factor FXR, is essential for the positive effects of VSG on weight loss and glycemic control. This Perspective examines the relationship and sequence of events between altered bile acid levels and composition, FXR signaling, and gut microbiota after bariatric surgery. We hypothesize that although bile acids and FXR signaling are potent mediators of metabolic function, unidentified downstream targets are the main mediators behind the benefits of weight-loss surgery. One of these targets, the gut-derived peptide FGF15/19, is a potential molecular and therapeutic marker to explain the positive metabolic effects of bariatric surgery. Focusing research efforts on identifying these complex molecular mechanisms will provide new opportunities for therapeutic strategies to treat obesity and metabolic dysfunction. |
format | Online Article Text |
id | pubmed-6463577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-64635772019-09-01 Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery Bozadjieva, Nadejda Heppner, Kristy M. Seeley, Randy J. Diabetes Perspectives in Diabetes Bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective interventions available for sustained weight loss and improved glucose metabolism. Bariatric surgery alters the enterohepatic bile acid circulation, resulting in increased plasma bile levels as well as altered bile acid composition. While it remains unclear why both VSG and RYGB can alter bile acids, it is possible that these changes are important mediators of the effects of surgery. Moreover, a molecular target of bile acid synthesis, the bile acid–activated transcription factor FXR, is essential for the positive effects of VSG on weight loss and glycemic control. This Perspective examines the relationship and sequence of events between altered bile acid levels and composition, FXR signaling, and gut microbiota after bariatric surgery. We hypothesize that although bile acids and FXR signaling are potent mediators of metabolic function, unidentified downstream targets are the main mediators behind the benefits of weight-loss surgery. One of these targets, the gut-derived peptide FGF15/19, is a potential molecular and therapeutic marker to explain the positive metabolic effects of bariatric surgery. Focusing research efforts on identifying these complex molecular mechanisms will provide new opportunities for therapeutic strategies to treat obesity and metabolic dysfunction. American Diabetes Association 2018-09 2018-08-15 /pmc/articles/PMC6463577/ /pubmed/30135133 http://dx.doi.org/10.2337/dbi17-0007 Text en © 2018 by the American Diabetes Association. http://www.diabetesjournals.org/content/licenseReaders may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license. |
spellingShingle | Perspectives in Diabetes Bozadjieva, Nadejda Heppner, Kristy M. Seeley, Randy J. Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery |
title | Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery |
title_full | Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery |
title_fullStr | Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery |
title_full_unstemmed | Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery |
title_short | Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery |
title_sort | targeting fxr and fgf19 to treat metabolic diseases—lessons learned from bariatric surgery |
topic | Perspectives in Diabetes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463577/ https://www.ncbi.nlm.nih.gov/pubmed/30135133 http://dx.doi.org/10.2337/dbi17-0007 |
work_keys_str_mv | AT bozadjievanadejda targetingfxrandfgf19totreatmetabolicdiseaseslessonslearnedfrombariatricsurgery AT heppnerkristym targetingfxrandfgf19totreatmetabolicdiseaseslessonslearnedfrombariatricsurgery AT seeleyrandyj targetingfxrandfgf19totreatmetabolicdiseaseslessonslearnedfrombariatricsurgery |