Cargando…
Comparative Study of Back Propagation Artificial Neural Networks and Logistic Regression Model in Predicting Poor Prognosis after Acute Ischemic Stroke
OBJECTIVE: To investigate the predictive value of clinical variables on the poor prognosis at 90-day follow-up from acute stroke onset, and compare the diagnostic performance between back propagation artificial neural networks (BP ANNs) and Logistic regression (LR) models in predicting the prognosis...
Autores principales: | Liang, Yaru, Li, Qiguang, Chen, Peisong, Xu, Lingqing, Li, Jiehua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463818/ https://www.ncbi.nlm.nih.gov/pubmed/30997395 http://dx.doi.org/10.1515/med-2019-0030 |
Ejemplares similares
-
Multivariable Logistic Regression And Back Propagation Artificial Neural Network To Predict Diabetic Retinopathy
por: Yao, Litong, et al.
Publicado: (2019) -
Transmission Risks of Schistosomiasis Japonica: Extraction from Back-propagation Artificial Neural Network and Logistic Regression Model
por: Xu, Jun-Fang, et al.
Publicado: (2013) -
Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey
por: Parsaeian, M, et al.
Publicado: (2012) -
The Application of Artificial Neural Networks and Logistic Regression in the Evaluation of Risk for Dry Eye after Vitrectomy
por: Yang, Wan-Ju, et al.
Publicado: (2020) -
Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis
por: Tang, Zi-Hui, et al.
Publicado: (2013)