Cargando…
LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities
Emerging evidence has shown microRNAs (miRNAs) play an important role in human disease research. Identifying potential association among them is significant for the development of pathology, diagnose and therapy. However, only a tiny portion of all miRNA-disease pairs in the current datasets are exp...
Autores principales: | Wang, Lei, You, Zhu-Hong, Chen, Xing, Li, Yang-Ming, Dong, Ya-Nan, Li, Li-Ping, Zheng, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464243/ https://www.ncbi.nlm.nih.gov/pubmed/30917115 http://dx.doi.org/10.1371/journal.pcbi.1006865 |
Ejemplares similares
-
Predicting miRNA-disease associations based on graph attention network with multi-source information
por: Li, Guanghui, et al.
Publicado: (2022) -
Grouping miRNAs of similar functions via weighted information content of gene ontology
por: Lan, Chaowang, et al.
Publicado: (2016) -
KGDCMI: A New Approach for Predicting circRNA–miRNA Interactions From Multi-Source Information Extraction and Deep Learning
por: Wang, Xin-Fei, et al.
Publicado: (2022) -
Identification of MiRNA–Disease Associations Based on Information of Multi-Module and Meta-Path
por: Li, Zihao, et al.
Publicado: (2022) -
DBMDA: A Unified Embedding for Sequence-Based miRNA Similarity Measure with Applications to Predict and Validate miRNA-Disease Associations
por: Zheng, Kai, et al.
Publicado: (2019)