Cargando…
Shape Dynamics of Bouncing Droplets
Oscillating shape motion of a freely falling and bouncing water droplet has long fascinated and inspired scientists. We propose dynamic non-linear equations for closed, two-dimensional surfaces in gravity and apply it to analyze shape dynamics of freely falling and bouncing drops. The analytic and n...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465294/ https://www.ncbi.nlm.nih.gov/pubmed/30988358 http://dx.doi.org/10.1038/s41598-019-42580-5 |
Sumario: | Oscillating shape motion of a freely falling and bouncing water droplet has long fascinated and inspired scientists. We propose dynamic non-linear equations for closed, two-dimensional surfaces in gravity and apply it to analyze shape dynamics of freely falling and bouncing drops. The analytic and numerical solutions qualitatively well explain why drops oscillate among prolate/oblate morphology and display a number of features consistent with experiments. In addition, numerical solutions for simplified equations indicate nonlinear effects of nonperiodic/asymmetric motion and the growing amplitude in the surface density oscillations and well agree to previous experimental data. |
---|