Cargando…

Shape Dynamics of Bouncing Droplets

Oscillating shape motion of a freely falling and bouncing water droplet has long fascinated and inspired scientists. We propose dynamic non-linear equations for closed, two-dimensional surfaces in gravity and apply it to analyze shape dynamics of freely falling and bouncing drops. The analytic and n...

Descripción completa

Detalles Bibliográficos
Autor principal: Svintradze, David V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465294/
https://www.ncbi.nlm.nih.gov/pubmed/30988358
http://dx.doi.org/10.1038/s41598-019-42580-5
Descripción
Sumario:Oscillating shape motion of a freely falling and bouncing water droplet has long fascinated and inspired scientists. We propose dynamic non-linear equations for closed, two-dimensional surfaces in gravity and apply it to analyze shape dynamics of freely falling and bouncing drops. The analytic and numerical solutions qualitatively well explain why drops oscillate among prolate/oblate morphology and display a number of features consistent with experiments. In addition, numerical solutions for simplified equations indicate nonlinear effects of nonperiodic/asymmetric motion and the growing amplitude in the surface density oscillations and well agree to previous experimental data.