Cargando…
Prediction of a typhoon track using a generative adversarial network and satellite images
Tracks of typhoons are predicted using a generative adversarial network (GAN) with satellite images as inputs. Time series of satellite images of typhoons which occurred in the Korea Peninsula in the past are used to train the neural network. The trained GAN is employed to produce a 6-hour-advance t...
Autores principales: | Rüttgers, Mario, Lee, Sangseung, Jeon, Soohwan, You, Donghyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465318/ https://www.ncbi.nlm.nih.gov/pubmed/30988405 http://dx.doi.org/10.1038/s41598-019-42339-y |
Ejemplares similares
-
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022) -
Jitter Detection and Image Restoration Based on Generative Adversarial Networks in Satellite Images
por: Wang, Zilin, et al.
Publicado: (2021) -
Deep learning-based hologram generation using a white light source
por: Go, Taesik, et al.
Publicado: (2020) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Beautification of images by generative adversarial networks
por: Music, Amar, et al.
Publicado: (2023)