Cargando…

Prognosis Prediction of Colorectal Cancer Using Gene Expression Profiles

Background: Investigation on prognostic markers for colorectal cancer (CRC) deserves efforts, but data from China are scarce. This study aimed to build a prognostic algorithm using differentially expressed gene (DEG) profiles and to compare it with the TNM staging system in their predictive accuracy...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Feixia, Chen, Tianhui, Sun, Xiaohui, Li, Kuanrong, Jiang, Xiyi, Försti, Asta, Zhu, Yimin, Lai, Maode
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465763/
https://www.ncbi.nlm.nih.gov/pubmed/31024853
http://dx.doi.org/10.3389/fonc.2019.00252
Descripción
Sumario:Background: Investigation on prognostic markers for colorectal cancer (CRC) deserves efforts, but data from China are scarce. This study aimed to build a prognostic algorithm using differentially expressed gene (DEG) profiles and to compare it with the TNM staging system in their predictive accuracy for CRC prognosis in Chinese patients. Methods: DEGs in six paired tumor and corresponding normal tissues were determined using RNA-Sequencing. Subsequently, matched tumor and normal tissues from 127 Chinese patients were assayed for further validation. Univariate and multivariate Cox regressions were used to identify informative DEGs. A predictive index (PI) was derived as a linear combination of the products of the DEGs and their Cox regression coefficients. The combined predictive accuracy of the DEGs-based PI and tumors' TNM stages was also examined by a logistic regression model including the two predictors. The predictive performance was evaluated with the area under the receiver operating characteristics (AUCs). Results: Out of 75 candidate DEGs, we identified 10 DEGs showing statistically significant associations with CRC survival. A PI based on these 10 DEGs (PI-10) predicted CRC survival probability more accurately than the TNM staging system [AUCs for 3-year survival probability 0.73 (95% confidence interval: 0.64, 0.81) vs. 0.68 (0.59, 0.76)] but comparable to a simplified PI (PI-5) using five DEGs (LOC646627, BEST4, KLF9, ATP6V1A, and DNMT3B). The predictive accuracy was improved further by combining PI-5 and the TNM staging system [AUC for 3-year survival probability: 0.72 (0.63, 0.80)]. Conclusion: Prognosis prediction based on informative DEGs might yield a higher predictive accuracy in CRC prognosis than the TNM staging system does.