Cargando…
A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements
The shoulder is the most mobile joint of the human body, but it is very fragile; several pathologies, and especially muscular degenerations in the elderly, can affect its stability. These are more commonly called rotator cuff fractures. In the case of this type of pathology, the mobility of the shou...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466006/ https://www.ncbi.nlm.nih.gov/pubmed/30791359 http://dx.doi.org/10.3390/bioengineering6010019 |
_version_ | 1783411010586017792 |
---|---|
author | Mebarki, Salah Aour, Benaoumeur Jourdan, Franck Malachanne, Etienne Belaghit, Abdel Hakem |
author_facet | Mebarki, Salah Aour, Benaoumeur Jourdan, Franck Malachanne, Etienne Belaghit, Abdel Hakem |
author_sort | Mebarki, Salah |
collection | PubMed |
description | The shoulder is the most mobile joint of the human body, but it is very fragile; several pathologies, and especially muscular degenerations in the elderly, can affect its stability. These are more commonly called rotator cuff fractures. In the case of this type of pathology, the mobility of the shoulder decreases and pain appears. In order to restore mobility and reduce pain, implantation of an inverted shoulder prosthesis is recommended. Unfortunately, over time a notch phenomenon has been observed. In the lower position of the arm, part of the implant comes into contact with the scapula and therefore causes deterioration of the bone. Among the solutions adopted is the lateralized method with bone grafting. However, a main disadvantage of this method concerns the reconstruction of the graft in the case of prosthesis revision. In this context, the aim of the present work was to reconstruct the shoulder joint in 3D in order to obtain a bio-faithful geometry, and then study the behavior of different types of biomaterials that can replace bone grafting. To this end, three arm abduction motions were examined for three individuals. From the results obtained, it appears that grafts in ultra-high molecular weight polyethylene (UHMWPE) exhibit a behavior closer to that of bones. |
format | Online Article Text |
id | pubmed-6466006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64660062019-04-19 A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements Mebarki, Salah Aour, Benaoumeur Jourdan, Franck Malachanne, Etienne Belaghit, Abdel Hakem Bioengineering (Basel) Article The shoulder is the most mobile joint of the human body, but it is very fragile; several pathologies, and especially muscular degenerations in the elderly, can affect its stability. These are more commonly called rotator cuff fractures. In the case of this type of pathology, the mobility of the shoulder decreases and pain appears. In order to restore mobility and reduce pain, implantation of an inverted shoulder prosthesis is recommended. Unfortunately, over time a notch phenomenon has been observed. In the lower position of the arm, part of the implant comes into contact with the scapula and therefore causes deterioration of the bone. Among the solutions adopted is the lateralized method with bone grafting. However, a main disadvantage of this method concerns the reconstruction of the graft in the case of prosthesis revision. In this context, the aim of the present work was to reconstruct the shoulder joint in 3D in order to obtain a bio-faithful geometry, and then study the behavior of different types of biomaterials that can replace bone grafting. To this end, three arm abduction motions were examined for three individuals. From the results obtained, it appears that grafts in ultra-high molecular weight polyethylene (UHMWPE) exhibit a behavior closer to that of bones. MDPI 2019-02-19 /pmc/articles/PMC6466006/ /pubmed/30791359 http://dx.doi.org/10.3390/bioengineering6010019 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mebarki, Salah Aour, Benaoumeur Jourdan, Franck Malachanne, Etienne Belaghit, Abdel Hakem A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements |
title | A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements |
title_full | A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements |
title_fullStr | A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements |
title_full_unstemmed | A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements |
title_short | A Study of the Biomechanical Behavior of the Implantation Method of Inverted Shoulder Prosthesis (BIO–RSA) under Different Abduction Movements |
title_sort | study of the biomechanical behavior of the implantation method of inverted shoulder prosthesis (bio–rsa) under different abduction movements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466006/ https://www.ncbi.nlm.nih.gov/pubmed/30791359 http://dx.doi.org/10.3390/bioengineering6010019 |
work_keys_str_mv | AT mebarkisalah astudyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT aourbenaoumeur astudyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT jourdanfranck astudyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT malachanneetienne astudyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT belaghitabdelhakem astudyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT mebarkisalah studyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT aourbenaoumeur studyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT jourdanfranck studyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT malachanneetienne studyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements AT belaghitabdelhakem studyofthebiomechanicalbehavioroftheimplantationmethodofinvertedshoulderprosthesisbiorsaunderdifferentabductionmovements |