Cargando…

Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights

Transthyretin (TTR) amyloidosis is caused by systemic deposition of wild-type or variant amyloidogenic TTR (ATTRwt and ATTRv, respectively). ATTRwt amyloidosis has traditionally been termed senile systemic amyloidosis, while ATTRv amyloidosis has been called familial amyloid polyneuropathy. Although...

Descripción completa

Detalles Bibliográficos
Autores principales: Koike, Haruki, Katsuno, Masahisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466231/
https://www.ncbi.nlm.nih.gov/pubmed/30764529
http://dx.doi.org/10.3390/biomedicines7010011
_version_ 1783411061016231936
author Koike, Haruki
Katsuno, Masahisa
author_facet Koike, Haruki
Katsuno, Masahisa
author_sort Koike, Haruki
collection PubMed
description Transthyretin (TTR) amyloidosis is caused by systemic deposition of wild-type or variant amyloidogenic TTR (ATTRwt and ATTRv, respectively). ATTRwt amyloidosis has traditionally been termed senile systemic amyloidosis, while ATTRv amyloidosis has been called familial amyloid polyneuropathy. Although ATTRwt amyloidosis has classically been regarded as one of the causes of cardiomyopathy occurring in the elderly population, recent developments in diagnostic techniques have significantly expanded the concept of this disease. For example, this disease is now considered an important cause of carpal tunnel syndrome in the elderly population. The phenotypes of ATTRv amyloidosis also vary depending on the mutation and age of onset. Peripheral neuropathy usually predominates in patients from the conventional endemic foci, while cardiomyopathy or oculoleptomeningeal involvement may also become major problems in other patients. Electron microscopic studies indicate that the direct impact of amyloid fibrils on surrounding tissues leads to organ damage, whereas accumulating evidence suggests that nonfibrillar TTR, such as oligomeric TTR, is toxic, inducing neurodegeneration. Microangiopathy has been suggested to act as an initial lesion, increasing the leakage of circulating TTR. Regarding treatments, the efficacy of liver transplantation has been established for ATTRv amyloidosis patients, particularly patients with early-onset amyloidosis. Recent phase III clinical trials have shown the efficacy of TTR stabilizers, such as tafamidis and diflunisal, for both ATTRwt and ATTRv amyloidosis patients. In addition, a short interfering RNA (siRNA), patisiran, and an antisense oligonucleotide (ASO), inotersen, have been shown to be effective for ATTRv amyloidosis patients. Given their ability to significantly reduce the production of both wild-type and variant TTR in the liver, these gene-silencing drugs seem to be the optimal therapeutic option for ATTR amyloidosis. Hence, the long-term efficacy and tolerability of novel therapies, particularly siRNA and ASO, must be determined to establish an appropriate treatment program.
format Online
Article
Text
id pubmed-6466231
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64662312019-04-19 Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights Koike, Haruki Katsuno, Masahisa Biomedicines Review Transthyretin (TTR) amyloidosis is caused by systemic deposition of wild-type or variant amyloidogenic TTR (ATTRwt and ATTRv, respectively). ATTRwt amyloidosis has traditionally been termed senile systemic amyloidosis, while ATTRv amyloidosis has been called familial amyloid polyneuropathy. Although ATTRwt amyloidosis has classically been regarded as one of the causes of cardiomyopathy occurring in the elderly population, recent developments in diagnostic techniques have significantly expanded the concept of this disease. For example, this disease is now considered an important cause of carpal tunnel syndrome in the elderly population. The phenotypes of ATTRv amyloidosis also vary depending on the mutation and age of onset. Peripheral neuropathy usually predominates in patients from the conventional endemic foci, while cardiomyopathy or oculoleptomeningeal involvement may also become major problems in other patients. Electron microscopic studies indicate that the direct impact of amyloid fibrils on surrounding tissues leads to organ damage, whereas accumulating evidence suggests that nonfibrillar TTR, such as oligomeric TTR, is toxic, inducing neurodegeneration. Microangiopathy has been suggested to act as an initial lesion, increasing the leakage of circulating TTR. Regarding treatments, the efficacy of liver transplantation has been established for ATTRv amyloidosis patients, particularly patients with early-onset amyloidosis. Recent phase III clinical trials have shown the efficacy of TTR stabilizers, such as tafamidis and diflunisal, for both ATTRwt and ATTRv amyloidosis patients. In addition, a short interfering RNA (siRNA), patisiran, and an antisense oligonucleotide (ASO), inotersen, have been shown to be effective for ATTRv amyloidosis patients. Given their ability to significantly reduce the production of both wild-type and variant TTR in the liver, these gene-silencing drugs seem to be the optimal therapeutic option for ATTR amyloidosis. Hence, the long-term efficacy and tolerability of novel therapies, particularly siRNA and ASO, must be determined to establish an appropriate treatment program. MDPI 2019-02-05 /pmc/articles/PMC6466231/ /pubmed/30764529 http://dx.doi.org/10.3390/biomedicines7010011 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Koike, Haruki
Katsuno, Masahisa
Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights
title Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights
title_full Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights
title_fullStr Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights
title_full_unstemmed Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights
title_short Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights
title_sort ultrastructure in transthyretin amyloidosis: from pathophysiology to therapeutic insights
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466231/
https://www.ncbi.nlm.nih.gov/pubmed/30764529
http://dx.doi.org/10.3390/biomedicines7010011
work_keys_str_mv AT koikeharuki ultrastructureintransthyretinamyloidosisfrompathophysiologytotherapeuticinsights
AT katsunomasahisa ultrastructureintransthyretinamyloidosisfrompathophysiologytotherapeuticinsights