Cargando…
Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm
Biomass could be a key source of renewable energy. Agricultural waste products, such as corn stover, provide a convenient means to replace fossil fuels, such as coal, and a large amount of feedstock is currently available for energy consumption in the U.S. This study has two main objectives: (1) to...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466356/ https://www.ncbi.nlm.nih.gov/pubmed/30691080 http://dx.doi.org/10.3390/bioengineering6010012 |
_version_ | 1783411090280939520 |
---|---|
author | Tumuluru, Jaya Shankar Heikkila, Dean J. |
author_facet | Tumuluru, Jaya Shankar Heikkila, Dean J. |
author_sort | Tumuluru, Jaya Shankar |
collection | PubMed |
description | Biomass could be a key source of renewable energy. Agricultural waste products, such as corn stover, provide a convenient means to replace fossil fuels, such as coal, and a large amount of feedstock is currently available for energy consumption in the U.S. This study has two main objectives: (1) to understand the impact of corn stover moisture content and grinder speed on grind physical properties; and (2) develop response surface models and optimize these models using a hybrid genetic algorithm. The response surface models developed were used to draw surface plots to understand the interaction effects of the corn stover grind moisture content and grinder speed on the grind physical properties and specific energy consumption. The surface plots indicated that a higher corn stover grind moisture content and grinder speed had a positive effect on the bulk and tapped density. The final grind moisture content was highly influenced by the initial moisture content of the corn stover grind. Optimization of the response surface models using the hybrid genetic algorithm indicated that moisture content in the range of 17 to 19% (w.b.) and a grinder speed of 47 to 49 Hz maximized the bulk and tapped density and minimized the geomantic mean particle length. The specific energy consumption was minimized when the grinder speed was about 20 Hz and the corn stover grind moisture content was about 10% (w.b.). |
format | Online Article Text |
id | pubmed-6466356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64663562019-04-19 Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm Tumuluru, Jaya Shankar Heikkila, Dean J. Bioengineering (Basel) Article Biomass could be a key source of renewable energy. Agricultural waste products, such as corn stover, provide a convenient means to replace fossil fuels, such as coal, and a large amount of feedstock is currently available for energy consumption in the U.S. This study has two main objectives: (1) to understand the impact of corn stover moisture content and grinder speed on grind physical properties; and (2) develop response surface models and optimize these models using a hybrid genetic algorithm. The response surface models developed were used to draw surface plots to understand the interaction effects of the corn stover grind moisture content and grinder speed on the grind physical properties and specific energy consumption. The surface plots indicated that a higher corn stover grind moisture content and grinder speed had a positive effect on the bulk and tapped density. The final grind moisture content was highly influenced by the initial moisture content of the corn stover grind. Optimization of the response surface models using the hybrid genetic algorithm indicated that moisture content in the range of 17 to 19% (w.b.) and a grinder speed of 47 to 49 Hz maximized the bulk and tapped density and minimized the geomantic mean particle length. The specific energy consumption was minimized when the grinder speed was about 20 Hz and the corn stover grind moisture content was about 10% (w.b.). MDPI 2019-01-25 /pmc/articles/PMC6466356/ /pubmed/30691080 http://dx.doi.org/10.3390/bioengineering6010012 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tumuluru, Jaya Shankar Heikkila, Dean J. Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm |
title | Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm |
title_full | Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm |
title_fullStr | Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm |
title_full_unstemmed | Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm |
title_short | Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm |
title_sort | biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466356/ https://www.ncbi.nlm.nih.gov/pubmed/30691080 http://dx.doi.org/10.3390/bioengineering6010012 |
work_keys_str_mv | AT tumulurujayashankar biomassgrindingprocessoptimizationusingresponsesurfacemethodologyandahybridgeneticalgorithm AT heikkiladeanj biomassgrindingprocessoptimizationusingresponsesurfacemethodologyandahybridgeneticalgorithm |