Cargando…
Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks
The Institute for Health Metrics and Evaluation (IHME) has stated that over 1.1 billion people suffered from mental disorders globally in 2016, and the burden of mental disorders has continued to grow with impacts on social development. Despite the implementation of strategies for promotion and prev...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466382/ https://www.ncbi.nlm.nih.gov/pubmed/30884824 http://dx.doi.org/10.3390/ijerph16060953 |
_version_ | 1783411096324931584 |
---|---|
author | Zhou, Tie Hua Hu, Gong Liang Wang, Ling |
author_facet | Zhou, Tie Hua Hu, Gong Liang Wang, Ling |
author_sort | Zhou, Tie Hua |
collection | PubMed |
description | The Institute for Health Metrics and Evaluation (IHME) has stated that over 1.1 billion people suffered from mental disorders globally in 2016, and the burden of mental disorders has continued to grow with impacts on social development. Despite the implementation of strategies for promotion and prevention in mental health WHO’s Comprehensive Mental Health Action Plan 2013–2020, the difficulty of diagnosis of mental disorders makes the objective “To provide comprehensive, integrated, and responsive mental health and social care services in community-based settings” hard to carry out. This paper presents a mental-disorder-aided diagnosis model (MDAD) to quantify the multipolarity sentiment affect intensity of users’ short texts in social networks in order to analyze the 11-dimensional sentiment distribution. We searched the five mental disorder topics and collected data based on Twitter hashtag. Through sentiment distribution similarity calculations and Stochastic Gradient Descent (SGD), people with a high probability of suffering from mental disorder can be detected in real time. In particular, mental health warnings can be made in time for users with an obvious emotional tendency in their tweets. In the experiments, we make a comprehensive evaluation of MDAD by five common adult mental disorders: depressive disorder, anxiety disorder, obsessive-compulsive disorder (OCD), bipolar disorder, and panic disorder. Our proposed model can effectively diagnose common mental disorders by sentiment multipolarity analysis, providing strong support for the prevention and diagnosis of mental disorders. |
format | Online Article Text |
id | pubmed-6466382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64663822019-04-22 Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks Zhou, Tie Hua Hu, Gong Liang Wang, Ling Int J Environ Res Public Health Article The Institute for Health Metrics and Evaluation (IHME) has stated that over 1.1 billion people suffered from mental disorders globally in 2016, and the burden of mental disorders has continued to grow with impacts on social development. Despite the implementation of strategies for promotion and prevention in mental health WHO’s Comprehensive Mental Health Action Plan 2013–2020, the difficulty of diagnosis of mental disorders makes the objective “To provide comprehensive, integrated, and responsive mental health and social care services in community-based settings” hard to carry out. This paper presents a mental-disorder-aided diagnosis model (MDAD) to quantify the multipolarity sentiment affect intensity of users’ short texts in social networks in order to analyze the 11-dimensional sentiment distribution. We searched the five mental disorder topics and collected data based on Twitter hashtag. Through sentiment distribution similarity calculations and Stochastic Gradient Descent (SGD), people with a high probability of suffering from mental disorder can be detected in real time. In particular, mental health warnings can be made in time for users with an obvious emotional tendency in their tweets. In the experiments, we make a comprehensive evaluation of MDAD by five common adult mental disorders: depressive disorder, anxiety disorder, obsessive-compulsive disorder (OCD), bipolar disorder, and panic disorder. Our proposed model can effectively diagnose common mental disorders by sentiment multipolarity analysis, providing strong support for the prevention and diagnosis of mental disorders. MDPI 2019-03-16 2019-03 /pmc/articles/PMC6466382/ /pubmed/30884824 http://dx.doi.org/10.3390/ijerph16060953 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Tie Hua Hu, Gong Liang Wang, Ling Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks |
title | Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks |
title_full | Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks |
title_fullStr | Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks |
title_full_unstemmed | Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks |
title_short | Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks |
title_sort | psychological disorder identifying method based on emotion perception over social networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466382/ https://www.ncbi.nlm.nih.gov/pubmed/30884824 http://dx.doi.org/10.3390/ijerph16060953 |
work_keys_str_mv | AT zhoutiehua psychologicaldisorderidentifyingmethodbasedonemotionperceptionoversocialnetworks AT hugongliang psychologicaldisorderidentifyingmethodbasedonemotionperceptionoversocialnetworks AT wangling psychologicaldisorderidentifyingmethodbasedonemotionperceptionoversocialnetworks |