Cargando…
Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating
Reversibly switching wettability between superhydrophobicity and superhydrophilicity has attracted widespread interest because of its important applications. In this work, we propose a reversible superhydrophobic–superhydrophilic conversion induced by charge injection and heating. Different from the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466678/ https://www.ncbi.nlm.nih.gov/pubmed/31019871 http://dx.doi.org/10.3762/bjnano.10.84 |
Sumario: | Reversibly switching wettability between superhydrophobicity and superhydrophilicity has attracted widespread interest because of its important applications. In this work, we propose a reversible superhydrophobic–superhydrophilic conversion induced by charge injection and heating. Different from the conventional electrowetting phenomenon caused by the accumulation of solid–liquid interfacial charges, we discovered a phenomenon where charge injection and accumulation at the solid surface results in a sharp increase in wettability. The wettability of a sprayed SiO(2) nanoparticle coating on a glass slide was shown to change from superhydrophobic to superhydrophilic by charge injection and heating, and the superhydrophobicity was restored by heating, verifying a reversible superhydrophobic–superhydrophilic conversion. The influence of voltage, temperature, and time on the coating wettability and its durability under reversible conversion have been studied. |
---|