Cargando…

The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level

BACKGROUND: Computed tomography (CT) automatic tube current modulation (ATCM) systems and iterative reconstruction (IR) play an important role in CT radiation dose optimization. How the two can best be used together is one of the challenges faced by radiology professionals. AIM: To determine optimum...

Descripción completa

Detalles Bibliográficos
Autores principales: Sookpeng, Supawitoo, Martin, Colin J, Butdee, Chitsanupong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467048/
https://www.ncbi.nlm.nih.gov/pubmed/31000942
http://dx.doi.org/10.4103/ijri.IJRI_124_18
_version_ 1783411230063460352
author Sookpeng, Supawitoo
Martin, Colin J
Butdee, Chitsanupong
author_facet Sookpeng, Supawitoo
Martin, Colin J
Butdee, Chitsanupong
author_sort Sookpeng, Supawitoo
collection PubMed
description BACKGROUND: Computed tomography (CT) automatic tube current modulation (ATCM) systems and iterative reconstruction (IR) play an important role in CT radiation dose optimization. How the two can best be used together is one of the challenges faced by radiology professionals. AIM: To determine optimum settings of ATCM noise index (NI) together with adaptive statistic iterative reconstruction (ASIR) for a general electric (GE) scanner that aims to achieve similar image quality to the standard protocol used in the hospital (Smart mA technique with NI of 11.57 and 30% ASIR reconstruction) with a lower dose. METHODS: Different NI and ASIR levels were set for scans of a phantom. Objective image quality assessments in terms of noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), low-contrast detectability (LCD), and modulation transfer function (MTF) were carried out in an anthropomorphic chest and a Catphan 700 phantom. Subjective image quality assessment was also performed with five readers to confirm whether the image quality of the new protocols was adequate. RESULT AND CONCLUSION: SNR and CNR increased with the strength of ASIR, and decreased with higher NI settings. The MTF improved slightly for higher dose levels and from filtered back projection (FBP) to higher strength of ASIR. LCD improved with ASIR compared to FBP and with higher strengths of ASIR. Qualitative scoring ranged between 3.0 and 4.6. A moderate degree of reliability was found between scoring. Use of NI 15.04 with 70% ASIR can reduce dose by 41% compared to the standard protocol of NI 11.57 with 30% ASIR without degradation of image quality.
format Online
Article
Text
id pubmed-6467048
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-64670482019-04-18 The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level Sookpeng, Supawitoo Martin, Colin J Butdee, Chitsanupong Indian J Radiol Imaging Radiophysics BACKGROUND: Computed tomography (CT) automatic tube current modulation (ATCM) systems and iterative reconstruction (IR) play an important role in CT radiation dose optimization. How the two can best be used together is one of the challenges faced by radiology professionals. AIM: To determine optimum settings of ATCM noise index (NI) together with adaptive statistic iterative reconstruction (ASIR) for a general electric (GE) scanner that aims to achieve similar image quality to the standard protocol used in the hospital (Smart mA technique with NI of 11.57 and 30% ASIR reconstruction) with a lower dose. METHODS: Different NI and ASIR levels were set for scans of a phantom. Objective image quality assessments in terms of noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), low-contrast detectability (LCD), and modulation transfer function (MTF) were carried out in an anthropomorphic chest and a Catphan 700 phantom. Subjective image quality assessment was also performed with five readers to confirm whether the image quality of the new protocols was adequate. RESULT AND CONCLUSION: SNR and CNR increased with the strength of ASIR, and decreased with higher NI settings. The MTF improved slightly for higher dose levels and from filtered back projection (FBP) to higher strength of ASIR. LCD improved with ASIR compared to FBP and with higher strengths of ASIR. Qualitative scoring ranged between 3.0 and 4.6. A moderate degree of reliability was found between scoring. Use of NI 15.04 with 70% ASIR can reduce dose by 41% compared to the standard protocol of NI 11.57 with 30% ASIR without degradation of image quality. Wolters Kluwer - Medknow 2019 /pmc/articles/PMC6467048/ /pubmed/31000942 http://dx.doi.org/10.4103/ijri.IJRI_124_18 Text en Copyright: © 2019 Indian Journal of Radiology and Imaging http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Radiophysics
Sookpeng, Supawitoo
Martin, Colin J
Butdee, Chitsanupong
The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level
title The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level
title_full The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level
title_fullStr The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level
title_full_unstemmed The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level
title_short The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level
title_sort investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level
topic Radiophysics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467048/
https://www.ncbi.nlm.nih.gov/pubmed/31000942
http://dx.doi.org/10.4103/ijri.IJRI_124_18
work_keys_str_mv AT sookpengsupawitoo theinvestigationofdoseandimagequalityofchestcomputedtomographyusingdifferentcombinationsofnoiseindexandadaptivestatisticiterativereconstructionlevel
AT martincolinj theinvestigationofdoseandimagequalityofchestcomputedtomographyusingdifferentcombinationsofnoiseindexandadaptivestatisticiterativereconstructionlevel
AT butdeechitsanupong theinvestigationofdoseandimagequalityofchestcomputedtomographyusingdifferentcombinationsofnoiseindexandadaptivestatisticiterativereconstructionlevel
AT sookpengsupawitoo investigationofdoseandimagequalityofchestcomputedtomographyusingdifferentcombinationsofnoiseindexandadaptivestatisticiterativereconstructionlevel
AT martincolinj investigationofdoseandimagequalityofchestcomputedtomographyusingdifferentcombinationsofnoiseindexandadaptivestatisticiterativereconstructionlevel
AT butdeechitsanupong investigationofdoseandimagequalityofchestcomputedtomographyusingdifferentcombinationsofnoiseindexandadaptivestatisticiterativereconstructionlevel