Cargando…
Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder
Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coeffic...
Autores principales: | Chen, Lili, Hao, Yaru, Hu, Xue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467380/ https://www.ncbi.nlm.nih.gov/pubmed/30990810 http://dx.doi.org/10.1371/journal.pone.0214712 |
Ejemplares similares
-
Enhancing classification of preterm-term birth using continuous wavelet transform and entropy-based methods of electrohysterogram signals
por: Romero-Morales, Héctor, et al.
Publicado: (2023) -
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020) -
Predicting preterm births from electrohysterogram recordings via deep learning
por: Goldsztejn, Uri, et al.
Publicado: (2023) -
Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model
por: Fakieh, Bahjat, et al.
Publicado: (2022) -
Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks
por: Mohammadi Far, Somayeh, et al.
Publicado: (2023)