Cargando…

Multi-scale analyses on performance degradation of reinforced concrete structure due to damage evolution on bonding interface

Damage in the bonding interface is a major factor that leads to the degradation of macroscopic performance of reinforced concrete (RC) structure because the damage generally results in the debonding or slipping between reinforcement and concrete. Based on hierarchical mesh methodology, a multi-scale...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ying, Zheng, Yuqian, Wang, Xuan, Li, Zhaoxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467381/
https://www.ncbi.nlm.nih.gov/pubmed/30990812
http://dx.doi.org/10.1371/journal.pone.0214915
Descripción
Sumario:Damage in the bonding interface is a major factor that leads to the degradation of macroscopic performance of reinforced concrete (RC) structure because the damage generally results in the debonding or slipping between reinforcement and concrete. Based on hierarchical mesh methodology, a multi-scale finite element (FE) model consisting of coarse aggregate, mortar and steel rebar was established to analyze the failure process of RC structure in this paper. In order to develop the mesoscopic FE model, Monte-Carlo method was used to randomly generate the size and position of coarse aggregates; a criterion of mesh reconstruction was proposed to separate the macroscopic mesh into the mesoscopic mesh and the mesh of transitional zone; the damage constitutive relation model for concrete presenting significant difference of its tensional and compressive properties was adopted to control the damage evolution in concrete when loading; the birth-death element method was used to adaptively reform the multi-scale FE model, and finally macroscopic performance degradation of RC structure was evaluated reasonably. A example of standard RC specimen under unaxial load was performed to verify both the accuracy and efficiency of the developed FE model in analyzing failure mode of RC specimen under unaxial tension and compression. By using the developed multiscale FE model, the destruction process of a four-point bending RC beam was analyzed. The simulation results coincide well with the test results from another literature.