Cargando…

Metagenomic insights into effects of wheat straw compost fertiliser application on microbial community composition and function in tobacco rhizosphere soil

The application of fertilisers incorporated with plant residues improves nutrient availability in soils, which shifts the microbial community structure and favours plant growth. To understand the impact of wheat straw compost fertiliser on soil properties and microbial community structure, tobacco p...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yongfeng, Zhang, Songjie, Li, Ning, Chen, Hongli, Jia, Hongfang, Song, Xiaoning, Liu, Guoshun, Ni, Chao, Wang, Zhizhong, Shao, Huifang, Zhang, Songtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467887/
https://www.ncbi.nlm.nih.gov/pubmed/30992508
http://dx.doi.org/10.1038/s41598-019-42667-z
Descripción
Sumario:The application of fertilisers incorporated with plant residues improves nutrient availability in soils, which shifts the microbial community structure and favours plant growth. To understand the impact of wheat straw compost fertiliser on soil properties and microbial community structure, tobacco planting soils were treated with four different fertilisers using varied amounts of straw compost fertiliser and a no fertiliser control (CK). Results showed that different fertilisers affected available soil nutrient contents differently. Treatment of tobacco soil with application of combined chemical fertiliser/wheat straw compost led to improved soil chemical properties, and increased soil organic matter and available phosphorus and potassium content. Treatment with FT1 200 kg/mu straw was found to be superior in improving soil fertility. Metagenomic DNA sequencing revealed that different fertiliser treatments resulted in changes in the microbial community composition. In soil treated with FT2 300 kg/mu straw for 60 days, the predominant bacterial phyla were Proteobacteria, Actinobacteria, and Verrucomicrobia, whereas Cyanobacteria, Basidiomycota, and Chlorophyta were found in high abundance in soil samples treated with FT1 200 kg/mu straw for 30 days. Functional annotation of metagenomic sequences revealed that genes involved in metabolic pathways were among the most abundant type. PCoA analysis clearly separated the samples containing straw compost fertiliser and chemical fertiliser. A significant correlation between soil properties and the dominant phyla was identified.