Cargando…

Neural correlates of cognitive dysfunction in fibromyalgia patients: Reduced brain electrical activity during the execution of a cognitive control task

OBJECTIVES: Fibromyalgia (FM) is a generalized chronic pain syndrome of unknown aetiology. Although FM patients frequently complain of cognitive dysfunction, this is one of the least studied symptoms. Research on brain activity associated with the perceived cognitive impairment is particularly scarc...

Descripción completa

Detalles Bibliográficos
Autores principales: Samartin-Veiga, N., González-Villar, A.J., Carrillo-de-la-Peña, M.T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468193/
https://www.ncbi.nlm.nih.gov/pubmed/30999252
http://dx.doi.org/10.1016/j.nicl.2019.101817
Descripción
Sumario:OBJECTIVES: Fibromyalgia (FM) is a generalized chronic pain syndrome of unknown aetiology. Although FM patients frequently complain of cognitive dysfunction, this is one of the least studied symptoms. Research on brain activity associated with the perceived cognitive impairment is particularly scarce. To address this gap, we recorded the brain electrical activity in participants during a cognitive control task. METHODS: Electroencephalograms (EEGs) were recorded in 19 FM patients and 22 healthy controls (all women) while they performed the Multi-Source Interference Task (MSIT). We analyzed the amplitude of the frontal N2 and parietal P3 components elicited in control and interference trials and their relation with reaction times. We also explored the relationship of perceived cognitive dysfunction, assessed using visual analogue scales (VAS) and the Memory Failures of Everyday (MFE-30) test, with N2 and P3 amplitudes. RESULTS: The N2 amplitudes were smaller in FM patients than in controls and were negatively associated with cognitive complaints. Unlike patients, healthy controls showed significant differences in the amplitude of P3 obtained from control vs. interference trials of the MSIT. Smaller N2 and P3 amplitudes were associated to longer reaction times. CONCLUSIONS: The findings suggest a reduction in frontal brain activity during performance of an interference task, which was associated with the patients' cognitive complaints. Findings on P3 suggest altered modulation of attention according to the task demands in FM patients. Deficits in flexibility in the allocation of attentional resources and cognitive control during complex tasks may explain the dyscognition reported by chronic pain patients.