Cargando…
EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data
The associations between diseases/traits and copy number variants (CNVs) have not been systematically investigated in genome-wide association studies (GWASs), primarily due to a lack of robust and accurate tools for CNV genotyping. Herein, we propose a novel ensemble learning framework, ensembleCNV,...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468244/ https://www.ncbi.nlm.nih.gov/pubmed/30722045 http://dx.doi.org/10.1093/nar/gkz068 |
_version_ | 1783411393743028224 |
---|---|
author | Zhang, Zhongyang Cheng, Haoxiang Hong, Xiumei Di Narzo, Antonio F Franzen, Oscar Peng, Shouneng Ruusalepp, Arno Kovacic, Jason C Bjorkegren, Johan L M Wang, Xiaobin Hao, Ke |
author_facet | Zhang, Zhongyang Cheng, Haoxiang Hong, Xiumei Di Narzo, Antonio F Franzen, Oscar Peng, Shouneng Ruusalepp, Arno Kovacic, Jason C Bjorkegren, Johan L M Wang, Xiaobin Hao, Ke |
author_sort | Zhang, Zhongyang |
collection | PubMed |
description | The associations between diseases/traits and copy number variants (CNVs) have not been systematically investigated in genome-wide association studies (GWASs), primarily due to a lack of robust and accurate tools for CNV genotyping. Herein, we propose a novel ensemble learning framework, ensembleCNV, to detect and genotype CNVs using single nucleotide polymorphism (SNP) array data. EnsembleCNV (a) identifies and eliminates batch effects at raw data level; (b) assembles individual CNV calls into CNV regions (CNVRs) from multiple existing callers with complementary strengths by a heuristic algorithm; (c) re-genotypes each CNVR with local likelihood model adjusted by global information across multiple CNVRs; (d) refines CNVR boundaries by local correlation structure in copy number intensities; (e) provides direct CNV genotyping accompanied with confidence score, directly accessible for downstream quality control and association analysis. Benchmarked on two large datasets, ensembleCNV outperformed competing methods and achieved a high call rate (93.3%) and reproducibility (98.6%), while concurrently achieving high sensitivity by capturing 85% of common CNVs documented in the 1000 Genomes Project. Given this CNV call rate and accuracy, which are comparable to SNP genotyping, we suggest ensembleCNV holds significant promise for performing genome-wide CNV association studies and investigating how CNVs predispose to human diseases. |
format | Online Article Text |
id | pubmed-6468244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-64682442019-04-22 EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data Zhang, Zhongyang Cheng, Haoxiang Hong, Xiumei Di Narzo, Antonio F Franzen, Oscar Peng, Shouneng Ruusalepp, Arno Kovacic, Jason C Bjorkegren, Johan L M Wang, Xiaobin Hao, Ke Nucleic Acids Res Methods Online The associations between diseases/traits and copy number variants (CNVs) have not been systematically investigated in genome-wide association studies (GWASs), primarily due to a lack of robust and accurate tools for CNV genotyping. Herein, we propose a novel ensemble learning framework, ensembleCNV, to detect and genotype CNVs using single nucleotide polymorphism (SNP) array data. EnsembleCNV (a) identifies and eliminates batch effects at raw data level; (b) assembles individual CNV calls into CNV regions (CNVRs) from multiple existing callers with complementary strengths by a heuristic algorithm; (c) re-genotypes each CNVR with local likelihood model adjusted by global information across multiple CNVRs; (d) refines CNVR boundaries by local correlation structure in copy number intensities; (e) provides direct CNV genotyping accompanied with confidence score, directly accessible for downstream quality control and association analysis. Benchmarked on two large datasets, ensembleCNV outperformed competing methods and achieved a high call rate (93.3%) and reproducibility (98.6%), while concurrently achieving high sensitivity by capturing 85% of common CNVs documented in the 1000 Genomes Project. Given this CNV call rate and accuracy, which are comparable to SNP genotyping, we suggest ensembleCNV holds significant promise for performing genome-wide CNV association studies and investigating how CNVs predispose to human diseases. Oxford University Press 2019-04-23 2019-02-05 /pmc/articles/PMC6468244/ /pubmed/30722045 http://dx.doi.org/10.1093/nar/gkz068 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Methods Online Zhang, Zhongyang Cheng, Haoxiang Hong, Xiumei Di Narzo, Antonio F Franzen, Oscar Peng, Shouneng Ruusalepp, Arno Kovacic, Jason C Bjorkegren, Johan L M Wang, Xiaobin Hao, Ke EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data |
title | EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data |
title_full | EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data |
title_fullStr | EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data |
title_full_unstemmed | EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data |
title_short | EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data |
title_sort | ensemblecnv: an ensemble machine learning algorithm to identify and genotype copy number variation using snp array data |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468244/ https://www.ncbi.nlm.nih.gov/pubmed/30722045 http://dx.doi.org/10.1093/nar/gkz068 |
work_keys_str_mv | AT zhangzhongyang ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT chenghaoxiang ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT hongxiumei ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT dinarzoantoniof ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT franzenoscar ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT pengshouneng ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT ruusalepparno ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT kovacicjasonc ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT bjorkegrenjohanlm ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT wangxiaobin ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata AT haoke ensemblecnvanensemblemachinelearningalgorithmtoidentifyandgenotypecopynumbervariationusingsnparraydata |