Cargando…
A general computational approach to predicting synergistic transcriptional cores that determine cell subpopulation identities
Advances in single-cell RNA-sequencing techniques reveal the existence of distinct cell subpopulations. Identification of transcription factors (TFs) that define the identity of these subpopulations poses a challenge. Here, we postulate that identity depends on background subpopulations, and is dete...
Autores principales: | Okawa, Satoshi, del Sol, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468312/ https://www.ncbi.nlm.nih.gov/pubmed/30820550 http://dx.doi.org/10.1093/nar/gkz147 |
Ejemplares similares
-
Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
por: Okawa, Satoshi, et al.
Publicado: (2018) -
A differential network analysis approach for lineage specifier prediction in stem cell subpopulations
por: Okawa, Satoshi, et al.
Publicado: (2015) -
ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination
por: Xu, Quan, et al.
Publicado: (2021) -
Multiomics data integration unveils core transcriptional regulatory networks governing cell-type identity
por: Jung, Sascha, et al.
Publicado: (2020) -
Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition
por: Chang, Hongyuan, et al.
Publicado: (2016)