Cargando…
WHISTLE: a high-accuracy map of the human N(6)-methyladenosine (m(6)A) epitranscriptome predicted using a machine learning approach
N (6)-methyladenosine (m(6)A) is the most prevalent post-transcriptional modification in eukaryotes, and plays a pivotal role in various biological processes, such as splicing, RNA degradation and RNA–protein interaction. We report here a prediction framework WHISTLE for transcriptome-wide m(6)A RNA...
Autores principales: | Chen, Kunqi, Wei, Zhen, Zhang, Qing, Wu, Xiangyu, Rong, Rong, Lu, Zhiliang, Su, Jionglong, de Magalhães, João Pedro, Rigden, Daniel J, Meng, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468314/ https://www.ncbi.nlm.nih.gov/pubmed/30993345 http://dx.doi.org/10.1093/nar/gkz074 |
Ejemplares similares
-
m(6)A-Atlas: a comprehensive knowledgebase for unraveling the N(6)-methyladenosine (m(6)A) epitranscriptome
por: Tang, Yujiao, et al.
Publicado: (2020) -
Predict Epitranscriptome Targets and Regulatory Functions of
N(6)-Methyladenosine (m(6)A) Writers and
Erasers
por: Song, Yiyou, et al.
Publicado: (2019) -
Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics
por: Liu, Lian, et al.
Publicado: (2020) -
RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis
por: Chen, Kunqi, et al.
Publicado: (2020) -
Enhancing Epitranscriptome Module Detection from m(6)A-Seq Data Using Threshold-Based Measurement Weighting Strategy
por: Chen, Kunqi, et al.
Publicado: (2018)